

MXL-IQ CONTROL PANEL

Operation, Installation, and Maintenance Manual

Siemens Industry, Inc. Building Technologies Division Florham Park, NJ Siemens Building Technologies, Ltd. Fire Safety & Security Products 2 Kenview Boulevard Brampton, Ontario L6T 5E4 Canada

P/N 315-093624-13

CAUTION

ALL WIRING MUST BE DONE AS DESCRIBED BELOW TO OBTAIN SAFE AND PROPER SYSTEM OPERATION.

- 1. Earth ground the MXL-IQ enclosure properly; see the latest edition of the National Electrical Code for approved methods. **Conduit ground is NOT adequate.**
- Separate all wiring for initiating devices (i.e., detectors, manual stations, TRI modules, etc.) from all other wiring in the MXL-IQ enclosure. To wire the System in compliance with UL 864, refer to the Installation and Power Limited Wiring Instructions for the MSE-3L Enclosure, P/N 315-095445.
- 3. INSULATE ALL CABLE DRAIN WIRES from any conduit or earth grounded electrical box, including those in the MXL-IQ enclosure.
- 4. Connect shield cable drain wire ONLY inside the MXL-IQ enclosure.
- 5. No wiring used for any of the following can run outside the building:
 - an ALD loop
 - a RS-485 network
 - an NAC circuit used for audibles
 - a CZM-1B6 or CZM-4 initiating device loop

For additional wiring information, refer to this manual or call Siemens Industry, Inc., Technical Support Department at 1-800-248-7976.

Table Of Contents

Description	1 - 1	Chapter 1
Introduction	1-1	
Software	1-1	
Minimum MXL-IQ Control Panel Configuration	1 - 3	
Components Of The Basic System	1 - 4	
SMB-2 Main Board	1 - 4	
MPS-6 Power Supply	1 - 5	
MPS-12 Power Supply	1 - 5	
MKB Keyboard/Annunciator Panel	1 - 5	
PIM-1 Peripheral Interface Module	1 - 6	
PIM-2 Peripheral Interface Module	1 - 6	
PAL-1	1 - 6	
MSE-3L or MSE-3M Enclosure		
TSW-2 Tamper Switch	1 - 7	
BP-61 Batteries		
BTX Batteries		
Optional Modules	1-8	
ALD-2I Analog Loop Driver	1 - 8	
CCU/M Pager Interface Module	1 - 8	
CMI-300 Interface Module	1 - 8	
CPY-HLI Interface Card*	1 - 8	
CRM-4 Relay Module	1 - 9	
CSM-4 Signal Module	1 - 9	
CZM-4 Conventional Zone Module	1 - 9	
D2300CP Fiber Optic Interface	1 - 10	
LLM-1 Leased Line Module	1 - 10	
MDACT Serial Dialer	1 - 10	
MID-16 Input Driver*		
MOD-16 Output Driver*	1 - 11	
MOI-7 Voice and Annunciator Driver*	1 - 11	

MOM-2 Card Cage	1 - 11
MOM-4 Card Cage	1 - 12
NIM-1W Network Interface Module	1 - 12
PS-5A Power Supply*	1 - 13
RCC Remote Command Center	1 - 13
RDM-PC Remote Diagnostics Module	1 - 13
Silent Knight Model 5128/5129 Digital Fire Communicator	1 - 14
Intelligent/Analog Devices	1 - 14
FP-11 Intelligent/Analog Photoelectric Detector	1 - 14
FPT-11 Intelligent Thermal Detector	1 - 14
ICP Intelligent Control Point	1 - 14
ICP-B6 Intelligent Control Point	1 - 14
ID-60P Intelligent/Analog Photoelectric Detector	1 - 14
ID-60PT Intelligent/Analog Photo-electric Detector with Heat Sensor	1 - 14
ID-60I Intelligent/Analog Ionization Detector	1 - 15
ID-60IH Intelligent/Analog Ionization High Altitude Detector	1 - 15
ID-60IA Intelligent/Analog Ionization High Air-Velocity Detector	1 - 15
ID-60IAH Intelligent/Analog Ionization High Air-Velocity, High Altitude Detector	1 - 15
ID-60IB Intelligent/Analog Ionization Air-Duct Detector	1 - 15
ID-60IBH Intelligent/Analog Ionization Air-Duct High Altitude Detector	1 - 15
ILI-1 Intelligent/Analog Ionization Detector	1 - 15
ILI-1H Intelligent/Analog Ionization High Altitude Detector	1 - 15
ILI-1A Intelligent/Analog Ionization High Air-Velocity Detector	1 - 15
ILI-1AH Intelligent/Analog Ionization High Air-Velocity, High Altitude Detector _	1 - 15
ILI-1B Intelligent/Analog Ionization Air-Duct Detector	1 - 16
ILI-1BH Intelligent/Analog Ionization Air-Duct High Altitude Detector	1 - 16
ILP-1 Intelligent/Analog Photoelectric Detector	1 - 16
ILPT-1 Intelligent/Analog Photoelectric Detector with Heat Sensor	1 - 16
ILP-2 Intelligent/Analog Photoelectric Detector	1 - 16
ILT-1 Intelligent Thermal Detector	1 - 16
LIM-1 Loop Isolator Module	1 - 16

MSI-10/20 Intelligent Manual Station	1 - 16
MSI-10B/20B Intelligent Manual Station	1 - 16
MSI-B6F Intelligent Manual Station	1 - 16
MSI-MB6 Intelligent Manual Station	1 - 16
MS-MI Intelligent Manual Station	1 - 16
TRI-B6, TRI-B6R, and TRI-B6D Intelligent Interface Modules	1 - 17
CZM-1B6 Remote Conventional Zone Module	1 - 17
DI-3 Ionization Detector	1 - 17
DI-3H Ionization High Altitude Detector	1 - 17
TRI-B6M Addressable Interface Module	1 - 17
TRI-S, TRI-R, and TRI-D Intelligent Interface Modules	1 - 17
CONVENTIONAL DEVICES	1 - 17
CONVENTIONAL DEVICES DI-A3 Ionization High Air-Velocity Detector	
	1 - 17
DI-A3 Ionization High Air-Velocity Detector	1 - 17 1 - 17
DI-A3 Ionization High Air-Velocity Detector DI-A3H Ionization High Air-Velocity, High Altitude Detector	1 - 17 1 - 17 1 - 17
DI-A3 Ionization High Air-Velocity Detector DI-A3H Ionization High Air-Velocity, High Altitude Detector DI-B3 Ionization Air Duct Detector	1 - 17 1 - 17 1 - 17 1 - 17 1 - 18
DI-A3 Ionization High Air-Velocity Detector DI-A3H Ionization High Air-Velocity, High Altitude Detector DI-B3 Ionization Air Duct Detector DI-B3H Ionization Air Duct High Altitude Detector	1 - 17 1 - 17 1 - 17 1 - 17 1 - 18 1 - 18
DI-A3 Ionization High Air-Velocity Detector DI-A3H Ionization High Air-Velocity, High Altitude Detector DI-B3 Ionization Air Duct Detector DI-B3H Ionization Air Duct High Altitude Detector DT-11 Thermal Detector	1 - 17 1 - 17 1 - 17 1 - 17 1 - 18 1 - 18 1 - 18
DI-A3 Ionization High Air-Velocity Detector DI-A3H Ionization High Air-Velocity, High Altitude Detector DI-B3 Ionization Air Duct Detector DI-B3H Ionization Air Duct High Altitude Detector DT-11 Thermal Detector PE-3 Photoelectric Detector	1 - 17 1 - 17 1 - 17 1 - 17 1 - 18 1 - 18 1 - 18 1 - 18 1 - 18
DI-A3 Ionization High Air-Velocity Detector DI-A3H Ionization High Air-Velocity, High Altitude Detector DI-B3 Ionization Air Duct Detector DI-B3H Ionization Air Duct High Altitude Detector DT-11 Thermal Detector PE-3 Photoelectric Detector with Heat Sensor	1 - 17 1 - 17 1 - 17 1 - 17 1 - 18 1 - 18

Installation	2 - 1
General Guidelines For Installing The MXL-IQ	2 - 1
Installation Instructions ForThe MXL-IQ Control Panel	2 - 2
Start Up Procedure	2 - 10
System Function Checkout	2 - 16

Chapter 2

Chapter 3	Operation	3 - 1
	Introduction	3 - 1
	System Modules	
	Remote System Modules	
	UsingThe MKB-4 Keyboard/Annunciator Panel in Local Mode	3 - 3
	The Display	3-3
	Internal Audible Alarm	3 - 4
	Modes Of Operation	3 - 5
	Alarm	3 - 6
	How The System Annunciates Fire Alarms	3 - 6
	Viewing the List of Alarms	3 - 7
	How to Block Acknowledge a Fire Alarm	3-7
	How to Individually Acknowledge a Fire Alarm	3-7
	Silencing The System	3 - 7
	Supervisories	3 - 8
	How The System Annunciates Supervisories	3 - 8
	Viewing the List of Supervisories	3 - 8
	How to Block Acknowledge a Supervisory	3 - 8
	How to Individually Acknowledge a Supervisory	3 - 9
	Security	3 - 9
	How The System Annunciates Security Conditions	3 - 9
	Viewing the List of Security Conditions	3 - 9
	How to Individually Acknowledge a Security Condition (UL 1076)	3 - 9
	Troubles	3 - 10
	How The System Annunciates Troubles	
	Viewing The List of Troubles	3 - 10
	How to Block Acknowledge a Trouble	3 - 10
	How to Individually Acknowledge a Trouble	3 - 11

Reset Procedures	3 - 11
Hard Reset	
Soft Reset	
Using The MKB Keyboard/Annunciator Panel in Global Mode	3 - 12
Limitations/Restrictions	3 - 12
Global MKB Display Format	3 - 12
Global Keypad Operation	3 - 13
Using The Menu	3 - 14
Operation of the Keys on the MXL-IQ Annunciator Panel	3 - 14
Numeric Keypad	3 - 14
The Command Keypad	3 - 14
Overview of the Menu's Structure	3 - 15
Beginning a Menu Session	3 - 16
Introduction to the Acknowledge Menu	3 - 16
Introduction to the List Menu	3 - 16
Introduction to the Control Menu	3 - 16
Introduction to the Test Menu	3 - 16
Entering Your Password	3 - 17
Entering a Module Number and Device Number	3 - 17
Entering a Device Number with the Module Number	3 - 17
Acknowledge Menu	3 - 18
Entering the Acknowledge Menu	3 - 18
Acknowledge: Alarm	3 - 18
Acknowledge: Supervsry	3 - 19
Acknowledge: Security	3 - 20
Acknowledge: Trouble	3 - 21
LIST Menu	3 - 22
Entering the List Menu	
List: Status	3 - 23
List: Alarm	3 - 23
List: Supervisory	3 - 24

List Security Conditions	3 - 24
List: Trouble	3 - 25
List: Sensitivity Settings	3 - 26
List: Voltages	3 - 26
List: Temp	3 - 28
List: Module Type	3 - 28
List: Device Type	3 - 29
List: Message	3 - 30
List: Software Version	3 - 30
List: Output States	3 - 31
List: Device Usages	3 - 32
List: Node Address	3 - 32
List: Air Sampling	3 - 32
List: Percent/ft	3 - 34
List Percent/ft – Senstvty	3 - 35
List Percent/ft – Pre-alarm	3 - 35
List Percent/ft – Analog	3 - 35
List: ASD_apps	3 - 35
CONTROL Menu	3 - 36
Entering the Control Menu	3 - 37
Control: Reset	3 - 37
Control: Sensitivity	3 - 37
Control: Arm/dis	3 - 38
Control: Output on/off	3 - 39
Control: Loop Arm	3 - 39
Control: Loop Disarm	3 - 40
Control: Net Link Request	3 - 40
Control: Air Sampling	3 - 40
Control: Percent/ft	3 - 41
Control: Change Apps	3 - 42

TEST Menu	3 - 42
Entering the Test Menu	3 - 43
Test: Set Time	3 - 43
Test: Ground Fault	3 - 44
Test: Power	3 - 44
Test: Lamp Test	3 - 45
Test: Device LED	3 - 45
Test: MOI Lamp Test	3 - 46
Test: Network (X-Network, M-Network)	3 - 46
Test: Override	3 - 46
Test: Det_Cleaned	3 - 47
Test: Event Log	3 - 47
Test: Pyro_diags	3 - 48
Test: Pre_alarm	3 - 48
Test: ASD_Devices	3 - 48
Test: Summarize	3 - 48
Test: Manual_Activate	3 - 49

Testing and Troubleshooting _____4 -1

Chapter 4

SYSTEM TEST	_4 -1
Every Six Months	4 -1
Every Year	4 -1
Fuse Replacement	4 -1
Troubleshooting	4 -2

Chapter 5	Walktest Operating Instructions	
	System w/AUD	
	System SIL	
	Loop w/AUD	
	Loop SIL	
	Zone wAUD	
	Zone SIL	
	Cancel	
	Extend	5 - 2
	Suggested Walktest Procedure	5 - 2
	Walktest the System	5 - 3
	Walktest Ending Sequence	5 - 4
	Walktest Entire ALD Loop, MOI-7 (MID-16), or CZM-4 Module	5 - 4
	Walktest Ending Sequence	5 - 5
	Walktest Individual CZM-1B6 or CZM-4 Zone	5 - 5
Chapter 6	History Log	6 - 1
	Logging Methods	6 - 2
	Small List Logging	
	Circular Logging	6-3
	MKB Menu Option to Enable, Disable and Erase History	6 - 4
	Enabling the History Option in CSG-M	6 - 4
	From the MKB Menu	6 - 4
	Local History Log Query	6 - 5
	Query Selection	6 - 5
	Query Filters	6 - 5
	NavigatingThe History Display	6 - 6
	History Display Formats	6-6
	Device Event	6 - 6
	Reset Event	6 - 6

Set Time Event	6 - 7	
Block Acknowledge Event	6 - 7	
Audible Silenced Event	6 - 8	
Override Event	6 - 8	
Audible Unsilenced Event	6 - 8	
Password Event	6 - 8	
Configuration Changed Event	6 - 9	
Manual Sensitivity Set Event	6 - 9	
Auto Sensitivity Set Event	6 - 9	
Logic Sensitivity Set Event	6 - 10	
History Print Formats At The MXL-IQ Panel	6 - 10	
MXL-IQTo CSG-M Download Formats	6 - 13	
History Download Sequence		
Compatible Devices		Appendix
Device Analog Voltages	B - 1	
MXL-IQ Battery Calculations	C - 1	
MXL-IQ Power Supply Load Calculations	D - 1	
AlarmVerification	E - 1	
Envirolink	F - 1	
Latching/Non-LatchingTroubles	G - 1	
Installing A Security Point	Н-1	
Application Specific Detection (ASD)		

MXL-IQTrouble Messages _____ J - 1

ix

Power Limited Wiring	_ K - 1
New Two Stage Alarm	_ L - 1
Pre-alarm, Dual Criteria Logic Functions, and Percent Per Foot Obscuration	M - 1
MXL-IQ Spare Parts List	_N - 1
New Features for MXL-IQ Revision 6.0 and Higher	_0 - 1
Connection & Rating Information	_ P - 1
Index	

1-1

Chapter

Description

The MXL-IQ Control Panel from Siemens Industry, Inc., is an advanced fire protection and alarm control panel that provides superior fire protection and multiplexed alarm reporting.

The MXL-IQ Control Panel can monitor up to 4 analog loops, each containing up to 60 **SIEMENS** intelligent devices.

The MXL-IQ Control Panel can control a wide variety of System outputs, such as:

- · Conventional Form C relay contacts
- Solid State outputs
- Supervised outputs to control Alarm Notification Appliances
- Municipal Tie outputs
- · Leased Line outputs

The MXL-IQ Control Panel can process logical decisions based on the status of initiating devices. The System can respond with customer-specified sequences of output circuit operation.

The System continuously checks all software and hardware for proper operation. It continuously checks all System memory components, control panel electronic hardware, and the System program. A hardwire watchdog circuit is provided to ensure that System programs are functioning properly. If a problem develops with the program or processor, the watchdog circuit places the System into a trouble condition and resets it. To ensure reliable operation, the MXL-IQ System is composed of independent modules, each with its own microprocessor. If the main panel's central processing unit stops, these modules, operating in default, still annunciate any alarm or trouble through common lines called *Any Alarm* and *Any Trouble*. All of the modules communicate with the MXL-IQ Panel through a serial communications System.

All modules are continuously supervised for their presence and for proper operation. Problems are shown on the display to aid in servicing and troubleshooting (See **Using the Menu** in the OPERATIONS section).

The MXL-IQ System is designed so that fire alarm operation has first priority over all other modes of operation. If the System loses battery and commercial power, it automatically goes through an initialization routine when power returns.

The MXL-IQ software was written in a highlevel language for ease of maintenance. The software incorporates a multitasking operating system that allows the microprocessor to handle many tasks almost simultaneously. This enables the MXL-IQ System to handle communications to all initiating and output option boards and to the annunciator. This also enables the MXL-IQ System to check that everything is running.

SOFTWARE

INTRODUCTION

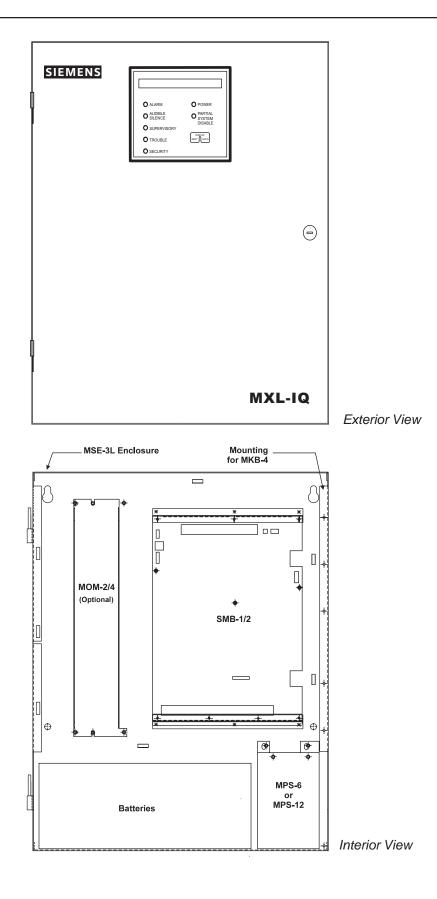


Figure 1 The MXL-IQ Control Panel

When the MXL-IQ Control Panel receives power, the System runs a start-up procedure that sets up all initial conditions. The System then starts the operating system and the initialization routines for all of the tasks, most of which concern handling System modules. When the display task is finished initializing, it displays the default time and date at power-up. Initialization of other modules may take several seconds, but this takes place in the background and so does not affect System operation.

The MXL-IQ System polls all network addresses to see that all specified modules are present and that there are no unspecified modules. Any modules or devices that do not agree with the programmed data are reported as troubles on the annunciator.

Minimum MXL-IQ Control Panel Configuration To Meet NFPA 72 Local, Municipal Tie, Remote Station, Proprietary, And Central Station, UL 1076, And NFPA 13 And 2001

Table 1 presents the minimum configuration necessary to meet NFPA 72 Local, Municipal Tie, Remote Station, Proprietary, and Central Station, UL 1076, and NFPA 13 and NFPA 2001.

NFPA Minimum Quantity

Module	Description	72 Local	72 Auxiliary	72 Remote Station	72 Proprietary	72 Central Station	UL 1076(a,c)	13 or 200
SMB-2(b)	MXL-IQ Main Unit	1	1	1*	1	1*	1	1
MPS-6/12	Power Supply	1	1	1	1	1	1	1
MKB-4/MKB-6	Keyboard/Annunciator Panel	1	1	1	1	1	1	1
MOM-2	Optional Module Card Cage	Х	1	1	Х	Х	х	1
MOM-4	Optional Module Card Cage	Х	1	1	Х	Х	х	1
CSM-4	Signal Module	Х	1	1 or 2**	Х	Х	х	1 (f)
CZM-4	Conventional Zone Module	***	***	***	***	***	Х	***
ALD-2I	Analog Loop Driver	***	***	***	***	***	****	***
CZM-1B6	Remote Conventional Zone Module	***	***	***	***	***	х	***
	Batteries(d,e)	1(d)	1(d)	1(d)	1(d)	1	1(c)	1(d)
TSW-2	Tamper Switch	Х	Х	Х	Х	Х	1(c)	х
PIM-1	Peripheral Interface Module	Х	Х	Х	1	Х	1	х
PIM-2	Peripheral Interface Module	Х	Х	Х	1	Х	1	х
PAL-1	Logging Printer	Х	Х	Х	1	Х	1	х
– not required		NOTE	\$					

X = not required

* Use Silent Knight listed models 5128/5129 or Siemens Model MDACT.

** One CSM-4 circuit must be configured for alarm transmission. In addition, depending on the local authority having jurisdiction, additional circuits may be required for Supervisory or Trouble transmission.

*** Any one of these modules is sufficient as an initiating device. **** Only TRI-B6/-S, TRI-B6R/-R, TRI-B6D/-D and TRI-B6M can be used as security devices. NOTES:

a. Refer to the MXL-IQ Wiring Diagram, P/N 575-293638 at the end of the manual.

b. The SMB-2 must be programmed by CSG-M for all System configurations (See CSG-M Programming Manual, P/N 315-090381).

c. UL 1076 requires a Model TSW-2 tamper switch and a PAL-1 printer.

d. The batteries available are: BP-61, BTX-1, and BTX-2. The BP-61 is a module consisting of four 6V, 15 AH batteries. The BTX-1 batteries are a pair of 12V, 31 AH batteries. The BTX-2 batteries are a pair of 12V, 55 AH batteries. Actual battery size depends on System configuration.
 e. See Appendix C for Battery Calculations.

f. Refer to the CSM-4 Installation Instructions (P/N 315-090854) for programming.

TABLE 1

Minimum MXL-IQ Configuration to Meet NFPA 72 Local, Auxiliary, Remote Station, Proprietary, and Central Station Connections, UL 1076, and NFPA 13 and 2001

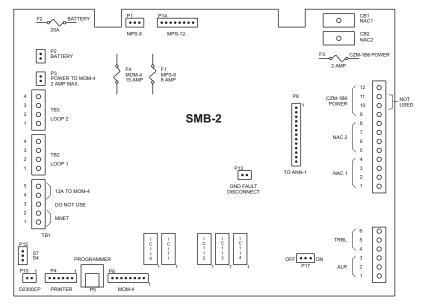


Figure 2 SMB-2 Main Board

Components Of The Basic System

The basic MXL-IQ Control Panel consists of the following components:

- SMB-2 Main Board
- MPS-6 or MPS-12 Power Supply
- MKB-4 Keyboard/Annunciator
- PAL-1 Logging Printer (NFPA Proprietary and UL 1076 configurations)
- PIM-1 Peripheral Interface Module (NFPA Proprietary and UL 1076 configurations)
- PIM-2 Peripheral Interface Module (NFPA Proprietary and UL 1076 configurations)
- MSE-3L Enclosure
- TSW-2 Tamper Switch (UL 1076 configuration only)
- BP-61, BTX-1, or BTX-2 Batteries

SMB-2 Main Board

The SMB-2 Main Board contains:

- 16-bit central processing unit (CPU)
- System read-only memories (EPROMs)
- System random-access memory (RAM)
- FLASH memory for CSG-M
- Watchdog circuitry
- Network interface circuitry
- Battery charger
- 24V regulator
- AC transfer relay
- CZM-1B6 auxiliary power
- 24 VDC unregulated supply
- Two analog loops (initiating/control)
- Two notification appliance circuits (audible circuits)
- Two dry-contact relays (Form C)

MPS-6 Power Supply

The MPS-6 is a supervised power supply that converts 120 VAC, 60 Hz to unregulated 24 VDC at 6A.

MPS-12 Power Supply

The MPS-12 is a high current power supply that provides the MXL-IQ System with primary 24 VDC power. It is rated at 12 amps and is unfiltered and unregulated. The MPS-12 supplies the SMB-2 with the power required for normal operation. The module incorporates a 5 amp resettable circuit breaker on the primary input, a 15 amp fuse on the 24V output, and a built-in AC line filter for surge and noise suppression.

MKB Keyboard/Annunciator Panel

The MKB Annunciator communicates with the SMB Main Control Board through the System network link. This module provides the MXL-IQ with its primary control and annunciation.

The MKB modules have an LCD alphanumeric display that continuously updates information about the System status and user-defined device messages. If there are multiple alarms, and/or troubles, including supervisories and security conditions, the highest priority event that occurred displays first. The user can see additional alarm and trouble data by pressing the **NEXT** key (MKB-4) or the **UP** and **DOWN** keys (MKB-6). Press the **HOLD** key (MKB-4 only) at any time to stop the display from scrolling.

The Control Panel contains the following indicators:

- Alarm
- Power
- Audible Silence
- Partial System Disable
- Supervisory
- Trouble
- Security

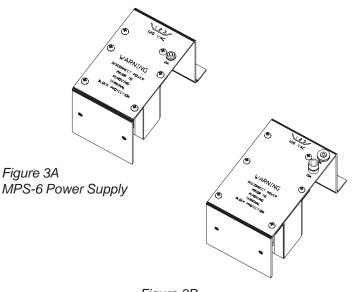


Figure 3B MPS-12 Power Supply

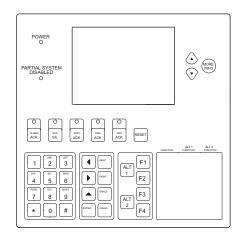
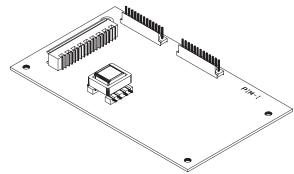
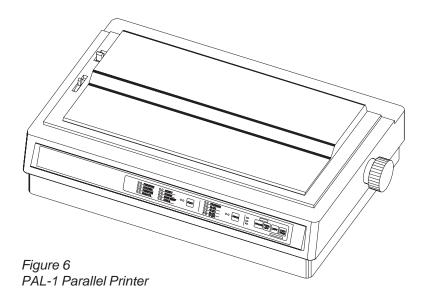




Figure 4 MKB-4 and MKB-6 Keyboard/Annunciator Panels

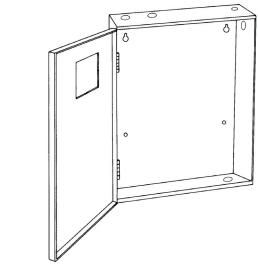
- The MKB has switches for the following functions:
- Acknowledging fire alarms (ALARM ACK)
- Silencing audibles (AUD SIL)
- Acknowledging supervisories (supv аск)
- Acknowledging troubles (ткв. аск)
- Acknowledging security conditions (sec Ack)
- Resetting the Control Panel (RESET)

In addition the module has display keys (NEXT and HOLD), a numerical keypad, PRINT, HELP, and CLEAR keys, and user-configurable function keys.

PIM-1 Peripheral Interface Module

The PIM-1 module is an interface for an MXL-IQ System to remote peripheral devices such as printers. It connects an RS-232C device to an MXL-IQ System without the peripheral device's protective ground causing a ground fault. The interface operates at up to 9600 baud without losing any characters.

PIM-2 Peripheral Interface Module


The PIM-2 module is an interface that allows the connection of UL listed EDP Centronics parallel printers to the MXL-IQ System. It converts the RS-232C (serial) printer output to a Centronics parallel interface. When used with the PAL-1, the PIM-2 provides a supervised parallel printer (NFPA 72 Proprietary or UL 1076) for the MXL-IQ System. However, this configuration is not supervised for data integrity.

PAL-1

The PAL-1 Logging Printer provides a paper record of the activity of the MXL-IQ System.

MSE-3L or MSE-3M Enclosure

The MSE-3L is the enclosure used with the MKB-4 and the MSE-3M is the enclosure used with the MKB-6 in the MXL-IQ System. Each enclosure consists of a backbox and front door that is shopped assembled.

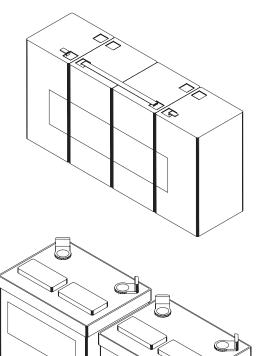
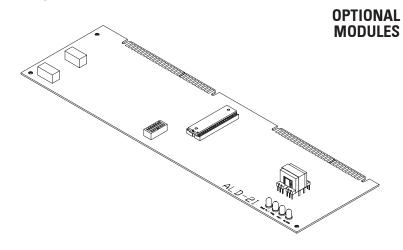

Figure 7 MSE-3L Enclosure

Figure 8

TSW-2 Tamper Switch

The TSW-2 Tamper Switch is a 3-position switch that monitors the opening of the MXL-IQ enclosure and reports a security alarm. Closing the door automatically returns the switch to its normal operating position. The switch can be pulled out to indicate a closed position for maintenance purposes.

BP-61 Batteries


The BP-61 is a module consisting of four 6V, 15 AH batteries. The BP-61 is recommended for the NFPA 72 Local and Proprietary, and the UL 1076 Systems. Actual battery size depends on System configuration. See Appendix C for battery calculations.

> Figure 9 **BP-61** Batteries

BTX Batteries

The BTX-1 batteries are a pair of 12V, 31 AH batteries. The BTX-2 batteries are a pair of 12V, 55 AH batteries. Actual battery size depends on System configuration. See Appendix C for battery calculations.

> Figure 10 **BTX Batteries**

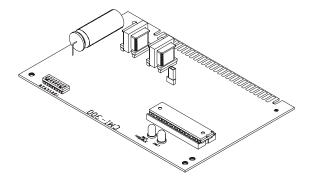


Figure 12 CMI-300 Interface Module

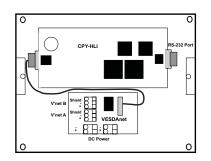


Figure 13 CPY-HLI Interface Card

The following modules are available as options to the MXL-IQ Control Panel:

NOTE: Modules marked with an asterisk (*) do not mount in the MSE-3L enclosure.

ALD-2I Analog Loop Driver

The ALD-2I Analog Loop Driver provides two initiating device circuits capable of Class A or Class B operation for monitoring analog devices. Each loop is capable of monitoring up to 60 analog devices. Each device has its own address. You can use CSG-M to write a custom message for each device (See CSG-M Programming Manual, P/N 315-090381).

CCU/M Pager Interface Module

The CCU/M alphanumeric interface module connects to any MXL System and can be programmed to send selected information to specific pagers programmed into the CCU/M. This equipment is designed to be installed and serviced by fully qualified field engineers. There are no user-serviceable or installation parts inside the unit.

CMI-300 Interface Module

The CMI-300 provides modem communications between an MXL-IQ System and a CXL System. The CMI-300 module is located on the MOM-2/4 board in the MXL-IQ enclosure. The CMI-300 plugs into a half slot in the MOM-2/4. It translates signals from the MXL-IQ communication lines of the SMB-2 to CXL modem signals. This signal is then transmitted along suitable cable to the CXM-1 module in the CXL enclosure.

CPY-HLI Interface Card*

The CPY-HLI interfaces MXL-IQ to VESDA detectors. MXL-IQ requires a NIM-1W module configured in CSG-M as an Air Sampling (VESDA) interface.

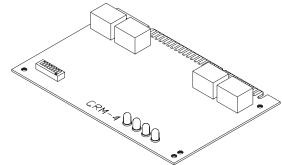
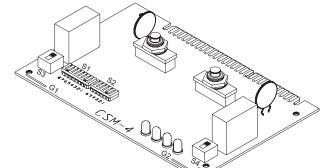
• The interface gives the MXL-IQ the ability to list, control, and annunciate the state of up to 31 VESDA detectors connected to a single NIM-1W.

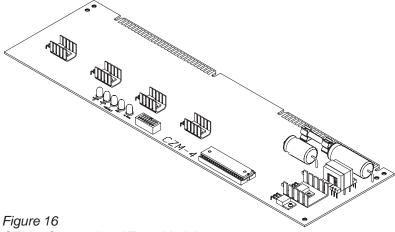
- MXL-IQ supports one NIM-1W configured as an Air Sampling (VESDA) interface.
- Each VESDA network will support one CPY-HLI.

CRM-4 Relay Module

The CRM-4 Relay module is an output control module that contains 4 relay outputs. Form C contacts are rated at 2A, 30 VDC/120 VAC resistive.

The CRM-4 has 4 LEDs. Two of the LEDs are user programmable.


Figure 14 CRM-4 Relay Module

CSM-4 Signal Module

The CSM-4 Signal module controls 2 supervised notification appliance circuits. Each circuit is capable of either Style Z (Class A) or Style Y (Class B) operation. Each circuit can be individually configured for notification appliances, municipal tie, leased line, or releasing service per NFPA 13, and NFPA 2001.

Figure 15 CSM-4 Signal Module

CZM-4 Conventional Zone Module The CZM-4 Conventional Zone module

provides four initiating device circuits capable of Style D (Class A) or Style B (Class B) operation. Each zone has its own address. You can use CSG-M to write a custom message for each zone (See CSGM Programming Manual, P/N 315-090381).

CZM-4 Conventional Zone Module

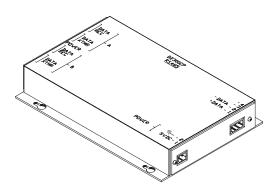


Figure 17 D2300CP Fiber Optic Interface

Figure 18 MDACT Serial Dialer

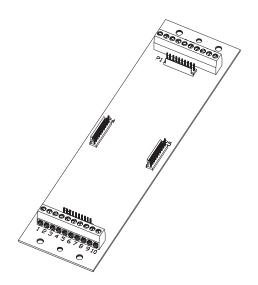


Figure 19 MID-16 Input Driver

D2300CP Fiber Optic Interface

The D2300CP is a Fiber Optic interface for the MXL's RS-485 network, MNET or XNET. It uses a two-fiber (Duplex) pair between each device. The D2300CP can function as either a repeater or an end point unit.

The D2300CP can operate in either a daisy chain or star configuration. This allows for network configurations that are not possible with the RS-485 network alone.

WARNING:

The D2300CP module is not listed for use by Factory Mutual. Applications requiring fiber connectivity of voice modules/systems are therefore not listed.

LLM-1 Leased Line Module

The LLM-1 provides telephone equipment overvoltage suppression in compliance with UL-864. The LLM-1 must be used with the MXL System Modules CSM-4 and RCM-1.

MDACT Serial Dialer

The MDACT is a multipoint serial dialer for use in MXL systems where point identification of alarm, supervisory, status or trouble indication is required at central stations.

MID-16 Input Driver*

The MID-16 module provides 16 general purpose inputs for user-defined operations for the MXL-IQ.

The MID-16 is controlled by the MOI-7 module. Up to 8 MID-16s can be used with an MOI-7. The function of each individual input is defined by the use assigned to it in CSG-M.

MOD-16 Output Driver*

The MOD-16 Output Driver module is an annunciator driver controlled by the MOI-7 module. Up to 8 MOD-16s can be used with an MOI-7. Each MOD-16 can activate up to 16 outputs for a total of 128 outputs.

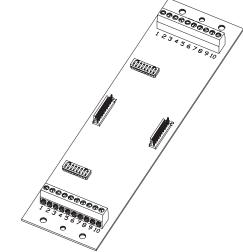


Figure 20 MOD-16 Output Driver

MOI-7 Voice and Annunciator Driver*

The MOI-7 module is an MXL-IQ network module that connects to a graphic annunciator using MOD-16s or MID-16s.

The MOI-7 has two LEDs to indicate the status of the MXL-IQ network interface:

- the TRANSMIT LED blinks when the MXL-IQ/MOI-7 communication is working
- the TROUBLE LED goes to steady when MOI cannot communicate

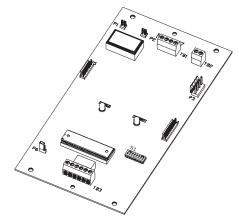


Figure 21 MOI-7 Voice and Annunciator Driver

MOM-2 Card Cage

The MOM-2 Card Cage contains 2 slots for optional module cards; it can handle 2 halfwidth cards or 1 full-width card. The MOM-2 provides 2 power-connector receptacles and 2 data-connector receptacles. A 24 VDC cable that provides the main power used by the optional modules, and an 8-wire ribbon cable for connection of 5 VDC and data, are provided with the MOM-2 installation kit.

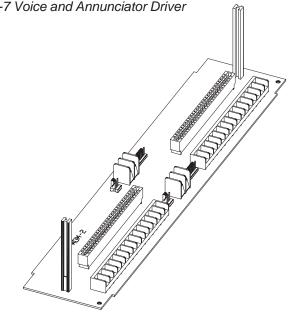
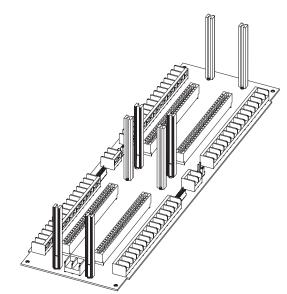



Figure 22 MOM-2 Card Cage

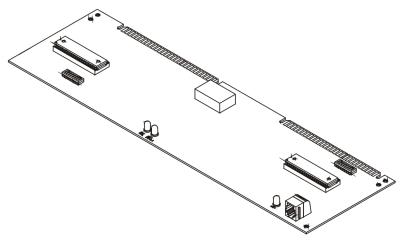


Figure 24 NIM-1W Network Interface Module

MOM-4 Card Cage

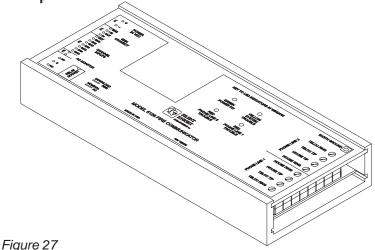
The MOM-4 Card Cage contains 4 slots for optional module cards; it can handle 4 halfwidth cards or 2 full-width cards. The MOM-4 provides 2 power-connector receptacles and 2 data-connector receptacles. A 24 VDC cable that provides the main power used by the optional modules, and an 8-wire ribbon cable for connection of 5 VDC and data, are provided with the MOM-4 installation kit.

NIM-1W Network Interface Module

The NIM-1W provides a communication path for the following uses:

- as an MXL-IQ networking interface
- as a connection to Foreign Systems
- as a connection to Air Sampling detectors

When used as a networking interface the NIM-1W supports the connection of up to 63 MXL-IQ Systems. This network also supports a Network Command Center (NCC) that monitors all the MXL-IQs in the networked group.


Output logic between MXL-IQ panels is made using CSG-M programming. CSG-M versions 6.01 and higher include options for networked MXL-IQ systems. Each MXL-IQ System is assigned a panel number. This panel number allows interactive programming between panels using CSG-M.

The NIM-1W supports Style 4/7 connection. In the event of an NIM-1W communication failure, each MXL-IQ System continues to operate as a stand-alone panel.

The NIM-1W can also be configured as an RS-232 or RS-485 two-wire interface to foreign systems. This operation is called FSI (Foreign System Interface). The FSI responds to a protocol and gathers information about the MXL-IQ status. The interface supports both single MXL-IQ Systems and networked systems. Typical use of this interface is between the MXL-IQ and building management systems.

Remote Command Centers

Silent Knight Model 5128/5129 Digital Fire Communicator

Silent Knight Model 5128/5129 Digital Fire Communicator

The MXL-IQ reports system conditions to a Central Station using the Silent Knight Model 5128/5129, a four-channel digital communicator that reports alarm, trouble, supervisory, and miscellaneous status. When used with the MXL-IQ, the Silent Knight Model 5128/5129 uses the alarm, trouble, and supervisory channels. The miscellaneous status channel may be used to annunciate conditions other than fire at the Central Station.

INTELLIGENT/ ANALOG DEVICES

The intelligent/analog devices described below are available for use with the MXL-IQ Control Panel. The UL identifiers for compatibility are the same as the model names specified below.

FP-11 Intelligent/Analog Photoelectric Detector

The FP-11 is an intelligent/analog photoelectric detector with 135° fixed temperature thermal assist that can be used as an area or duct detector [FP-11(d)]. The FP-11 is also a combination photo/thermal detector using our exclusive FirePrint[™] technology. It uses either a DB-11 low profile mounting base or DB-3S mounting base with the DB-ADPT adapter, a DB-X11RS mounting base with relay or DB-X3RS mounting base with relay or DB-X3RS mounting base with relay with the DB-ADPT adapter, an ADBX-11 audible base, or an AD-11P or AD-11XPR air duct housing. The FP-11 requires MXL-IQ Rev. 6.0 or higher firmware.

FPT-11 Intelligent Thermal Detector

The FPT-11 is an intelligent/analog fixedtemperature or fixed temperature /rate-ofrise thermal detector. It can only be used as an area detector. It uses either a DB-11 low profile mounting base or DB-3S mounting base with the DB-ADPT adapter, a DB-X11RS mounting base with relay or DB-X3RS mounting base with relay with the DB-ADPT adapter, or an ADBX-11 audible base. The FPT-11 requires MXL-IQ Rev. 6.0 or higher firmware.

ICP Intelligent Control Point

The ICP is an intelligent control point that can be used as an independent, remotely located notification appliance circuit (NAC). It communicates through the analog loop of the MXL-IQ System.

ICP-B6 Intelligent Control Point

The ICP-B6 is an intelligent control point that can be used as an independent, remotely located notification appliance circuit (NAC). It communicates through the analog loop of the MXL-IQ System.

ID-60P Intelligent/Analog Photoelectric Detector

The ID-60P is an intelligent/analog photoelectric detector that can be used as an area or duct detector [ID-60P(d)]. It uses either a DB-3S low profile mounting base, a DB-X3RS mounting base with relay, an AD-3P duct housing, or an ADBI-60 audible base.

ID-60PT Intelligent/Analog Photoelectric Detector with Heat Sensor

The ID-60PT is an intelligent/analog ratecompensated/fixed-temperature type thermal and photoelectric detector. It can only be used as an area detector. It uses either a DB-3S low profile mounting base, a DB-X3RS mounting base with relay, or an ADBI-60 audible base.

ID-60I Intelligent/Analog Ionization Detector

The ID-60I is an intelligent/analog ionization detector for use in open areas at altitudes of 0 to 4000 feet. It uses either a DB-3S low profile mounting base, a DB-X3RS mounting base with relay, or an ADBI-60 audible base.

ID-60IH Intelligent/Analog Ionization High Altitude Detector

The ID-60IH is an intelligent/analog ionization detector for use in open areas at altitudes of 3000 to 8000 feet. It uses either a DB-3S low profile mounting base, a DB-X3RS mounting base with relay, or an ADBI-60 audible base.

ID-60IA Intelligent/Analog Ionization High Air-Velocity Detector

The ID-60IA is an intelligent/analog ionization high air-velocity detector for use in open areas, computer facilities, and air ducts at altitudes of 0 to 4000 feet. It uses either a DB-3S low profile mounting base, a DB-X3RS mounting base with relay, or an ADBI-60 audible base.

ID-60IAH Intelligent/Analog lonization High Air-Velocity, High Altitude Detector

The ID-60IAH is an intelligent/analog ionization high air-velocity, high altitude detector for use in open areas, computer facilities, and air ducts at altitudes of 3000 to 8000 feet. It uses either a DB-3S low profile mounting base, a DB-X3RS mounting base with relay, or an ADBI-60 audible base.

ID-60IB Intelligent/Analog Ionization Air-Duct Detector

The ID-60IB is an intelligent/analog ionization detector for use in air duct applications at altitudes of 0 to 4000 feet. It uses either the AD-3I housing or the AD-3XRI housing.

ID-60IBH Intelligent/Analog Ionization Air-Duct High Altitude Detector

The ID-60IBH is an intelligent/analog ionization detector for use in air duct applications at altitudes of 3000 to 8000 feet. It uses either the AD-3I housing or the AD-3XRI housing.

ILI-1 Intelligent/Analog Ionization Detector

The ILI-1 is an intelligent/analog ionization detector for use in open areas at altitudes of 0 to 4000 feet. It uses either a DB-3S low profile mounting base, a DB-X3RS mounting base with relay, or an ADBI-60 audible base.

ILI-1H Intelligent/Analog Ionization High Altitude Detector

The ILI-1H is an intelligent/analog ionization detector for use in open areas at altitudes of 3000 to 8000 feet. It uses either a DB-3S low profile mounting base, a DB-X3RS mounting base with relay, or an ADBI-60 audible base.

ILI-1A Intelligent/Analog Ionization High Air-Velocity Detector

The ILI-1A is an intelligent/analog ionization high air-velocity detector for use in open areas, computer facilities, and air ducts at altitudes of 0 to 4000 feet. It uses either a DB-3S low profile mounting base, a DB-X3RS mounting base with relay, or an ADBI-60 audible base.

ILI-1AH Intelligent/Analog Ionization High Air-Velocity, High Altitude Detector

The ILI-1AH is an intelligent/analog ionization high air-velocity, high altitude detector for use in open areas, computer facilities, and air ducts at altitudes of 3000 to 8000 feet. It uses either a DB-3S low profile mounting base, a DB-X3RS mounting base with relay, or an ADBI-60 audible base.

ILI-1B Intelligent/Analog Ionization Air-Duct Detector

The ILI-1B is an intelligent/analog ionization detector for use in air duct applications at altitudes of 0 to 4000 feet. It uses either the AD-3I housing or the AD-3XRI housing.

ILI-1BH Intelligent/Analog Ionization Air-Duct High Altitude Detector

The ILI-1BH is an intelligent/analog ionization detector for use in air duct applications at altitudes of 3000 to 8000 feet. It uses either the AD-3I housing or the AD-3XRI housing.

ILP-1 Intelligent/Analog Photoelectric Detector

The ILP-1 is an intelligent/analog photoelectric detector that can be used as an area or duct detector [ILP-1(d)]. It uses either a DB-3S low profile mounting base, a DB-X3RS mounting base with relay, an AD-3ILP or AD-3XRILP duct housing, or an ADBI-60 audible base.

ILPT-1 Intelligent/Analog Photoelectric Detector with Heat Sensor

The ILPT-1 is an intelligent/analog ratecompensated/fixed-temperature type thermal and photoelectric detector. It can only be used as an area detector. It uses either a DB-3S low profile mounting base, a DB-X3RS mounting base with relay, or an ADBI-60 audible base.

ILP-2 Intelligent/Analog Photoelectric Detector

The ILP-2 is an intelligent/analog photoelectric detector that can be used as an area or duct detector [ILP-2(d)]. It uses either a DB-3S low profile mounting base, a DB-X3RS mounting base with relay, an AD-3ILP or AD-3XRILP duct housing, or an ADBI-60 audible base. The ILP-2 requires MXL-IQ Rev. 3.0 or higher firmware.

ILT-1 Intelligent Thermal Detector

The ILT-1 is an intelligent rate-compensated/fixed-temperature type thermal detector. It uses either a DB-3S low profile mounting base, a DB-X3RS mounting base with relay, or an ADBI-60 audible base.

LIM-1 Loop Isolator Module

The LIM-1 is a loop isolator module that isolates short circuits on MXL-IQ analog loops. The LIM-1 operates in both Class A and Class B circuits.

MSI-10/20 Intelligent Manual Station

The MSI-10/20 is an intelligent manual station designed to interface with an analog loop. The MSI can be flush mounted or surface mounted using the SB-5R mounting box.

MSI-10B/20B Intelligent Manual Station

The MSI-10B/20B is an intelligent manual station designed to interface with an analog loop. The MSI-10B/20B can be flush mounted or surface mounted using the SB-5R mounting box.

MSI-B6F Intelligent Manual Station

The MSI-B6F is an intelligent manual station designed to interface with an analog loop. The MSI-B6F is a single-action station; when used with the MS-FD adapter, the MSI-B6F is a double-action station. The MSI-B6F can be flush mounted or surface mounted using the MS-FB backbox.

MSI-MB6 Intelligent Manual Station

The MSI-MB6 is an intelligent manual station designed to interface with an analog loop. The MSI-MB6 is a single-action station; when used with the MS-DA plate, the MSI-MB6 is a double-action station. The MSI-MB6 can be flush mounted or surface mounted using the MS-SB backbox.

MS-MI Intelligent Manual Station

The MS-MI is an intelligent manual station designed to interface with an analog loop. The MS-MI is a single-action station; when used with the MS-DA plate, the MS-MI is a double-action station. The MS-MI can be flush mounted or surface mounted using the MS-SB backbox.

TRI-B6, TRI-B6R, and TRI-B6D Intelligent Interface Modules

The TRI-B6 series modules are intelligent interface modules that interface direct shorting contact devices with the analog loops. The TRI-B6 is a single-input module; the TRI-B6R is a single-input module with an independently controllable Form C relay; the TRI-B6D is a dual-input module.

TRI-B6M Addressable Interface Module

The TRI-B6M addressable interface module interfaces direct shorting contact devices with the analog loops. The TRI--B6M can monitor a normally open or closed dry contact and it can report the status of the contact

TRI-S, TRI-R, and TRI-D Intelligent Interface Modules

The TRI-S/R/D series modules are intelligent interface modules that interface direct shorting contact devices with the analog loops. The TRI-S is a single-input module; the TRI-R is a single-input module with an independently controllable Form C relay; the TRI-D is a dual-input module.

CZM-1B6 Remote Conventional Zone Module

The CZM-1B6 Remote Conventional Zone Module supports one zone of non-addressable initiating devices in either Style D (Class A) or Style B (Class B) configuration, for a maximum of 15 compatible 2-wire smoke detectors and an unlimited number of shorting devices.

The conventional devices described below are available for use with the MXL-IQ Control Panel.

The UL identifiers for compatibility are the same as the model numbers.

DI-3 Ionization Detector

The DI-3 is an ionization detector for use in open areas at altitudes of 0 to 4000 feet. It uses the DB-3S low profile surface mounting base.

DI-3H Ionization High Altitude Detector

The DI-3H is an ionization detector for use in open areas at altitudes of 3000 to 8000 feet. It uses the DB-3S low profile surface mounting base.

DI-A3 Ionization High Air-Velocity Detector

The DI-A3 is an ionization high air velocity detector for use in open areas, computer facilities, and air ducts at altitudes of 0 to 4000 feet and at air velocities of 0 to 1200 feet per minute. It uses the DB-3S low profile surface mounting base.

DI-A3H Ionization High Air-Velocity, High Altitude Detector

The DI-A3H is an ionization high air velocity, high altitude detector for use in air ducts only at altitudes of 3000 to 8000 feet and at air velocities of 300 to 1200 feet per minute. It uses the DB-3S low profile surface mounting base.

DI-B3 Ionization Air Duct Detector

The DI-B3 is an ionization detector for use only in air ducts at altitudes of 0 to 4000 feet. It must be used with a Series 3 air duct housing (AD-3I or AD-3RI).

CONVENTIONAL DEVICES

DI-B3H Ionization Air Duct High Altitude Detector

The DI-B3H is an ionization detector for use only in air ducts at altitudes of 3000 to 8000 feet. It must be used with a Series 3 air duct housing (AD-3I or AD-3RI).

DT-11 Thermal Detector

The DT-11 is a thermal detector for use in open areas. It uses the DB-11 low profile surface mounting base or the DB-3S mounting base with the DB-ADPT adapter.

PE-3 Photoelectric Detector

The PE-3 is a photoelectric detector that responds to a wide range of both flaming and smoldering fire conditions. It uses either the DB-3S low profile surface mounting base or the AD-3ILP or AD-3XRILP air duct housing.

PE-3T Photoelectric Detector with Heat Sensor

The PE-3T is a photoelectric detector with heat sensor that responds to a wide range of both flaming and smoldering fire conditions. It uses the DB-3S low profile surface mounting base.

PE-11 Photoelectric Detector

The PE-11 is a photoelectric detector that responds to a wide range of both flaming and smoldering fire conditions. It uses the DB-11 low profile surface mounting base, the DB-3S mounting base with the DB-ADPT adapter, or the AD-11P/11PR air duct housing.

PE-11T Photoelectric Detector with Heat Sensor

The PE-11T is a photoelectric detector with heat sensor that responds to a wide range of both flaming and smoldering fire conditions. It uses the DB-11 low profile surface mounting base or the DB-3S mounting base with the DB-ADPT adapter.

PBA-1191 Linear Beam Smoke Detector

The PBA-1191 can detect light or dark smoke buildup at distances between the transmitter (X) and receiver (R) of 17 feet to 280 feet. The PBA-1191 can be used in a variety of areas, including large, narrow, or high rooms, and rooms with high air turbulence. The PBA-1191 requires the PBB-1191 base.

NOTE: Only one PBA-1191, and no additional devices, can be connected to a CZM-4 initiating zone.

INTRODUCTION

Installation

Remove all system power before installation, first battery and then AC.

This section provides general installation instructions for mounting, wiring, and checkout of the MXL-IQ Control System from Siemens Industry, Inc.

Read this section before installing the equipment to ensure proper installation. If you are not familiar with the MXL-IQ, also read the first section of the manual. Be sure to ask Siemens Industry, Inc. Technical Support or an authorized Representative if you have any questions.

Install and use the MXL-IQ System in accordance with the appropriate Local, NFPA, and NEC Code requirements.

$\widehat{}$

Refer to the last page of the manual for a Warning Note required by the FCC for all commercial Class A computing equipment producing a clock frequency of 10K Hz or greater.

WARNING!

General Guidelines For Installing The MXL-IQ

Always remove power (battery and AC) and wait at least 10 seconds to allow the supply voltages to decay before installing or removing any module, cable, or wiring.

NOTE: If available, use a printer during the installation procedure as a debugging tool.

Follow Steps 1 through 13 for installation. Each step is thoroughly explained in the following pages.

- 1. Install the enclosure (page 2-2).
- 2. Install the TSW-2 Tamper Switch where required (page 2-2).
- 3. Pull the field wiring into the backbox and dress it to approximately where it will go (page 2-3).
- 4. Install the SMB-2 (page 2-3).
- 5. Install the MPS-6 (page 2-3).
- 6. Install the MKB-4 (page 2-4).
- 7. Install the PIM-1, PIM-2, and PAL-1 (If applicable) (page 2-5).
- 8. Install the MOM-2 or MOM-4 card (page 2-6).
- 9. Install the MOI-7, MOD-16, and MID-16 (If applicable) (page 2-9).
- 10. Install Field Wiring (page 2-10).
- 11. Check Field Wiring (page 2-10).
- 12. Start-up Procedure (page 2-10).
- 13. System Function Checkout (page 2-16).

Installation

1. Install the MSE-3L Enclosure

The MSE-3L is the enclosure for the MXL-IQ.

Consider the following when mounting the backbox:

INSTALLATION INSTRUCTIONS FOR THE MXL-IQ CONTROL PANEL

- Mounting height for visual and manual access to the MKB-4 Keyboard/annunciator
- Weight and size of enclosure
- Local Mounting codes

Fasten the backbox securely to a clean, dry, shock-free, and vibration-free surface. Position the backbox clear of obstructions so that the door opens freely and so that

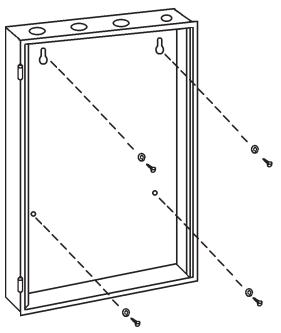


Figure 21 Mounting the MSE-3L Enclosure

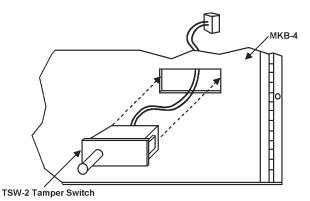


Figure 22 TSW-2 Tamper Switch

the indicators and controls are easily accessible.

NOTE: When the backbox is mounted semi-flush using the MET-3L kit, be sure that the position of the backbox permits the door to swing fully open. (See *MET-3L Installation Instructions,* P/N 315-095447.)

When deadfront construction is required, use the IQ-DFL panel (See *IQ-DFL Installation Instructions*, P/N 315-095446.)

When the MSE-3L is used for remote applications, use the IQ-Blank where there is no MKB-4 installed (See *IQ-Blank Installation Instructions,* P/N 315-095482.)

To install the backbox:(Refer to Figure 21)

- a. Slip the door off the hinges of the box and put it to one side temporarily.
- b. Remove the knockouts in the backbox where field wiring is required (Refer to *MSE-3L Power Limited Wiring Instructions,* P/N 315-095445, for location of knockouts).
- c. Hold the empty enclosure against the wall at a height that provides easy access.
- d. Mark drill points on the wall in the center of the two slots on the upper rear of the MSE-3L.
- e. Drill the two holes and screw in the top screws, leaving a small gap between the wall and each top screw.
- f. Mount the MSE-3L on the 2 bolts and then install the bottom bolts.
- g. Slip the door back on the hinges of the enclosure.

2. Install The TSW-2 Tamper Switch (*Refer to Figure 22*)

If your configuration (UL 1076) requires the TSW-2 Tamper Switch, install it now.

The TSW-2 mounts into the rectangular slot located in the lower right side of the MKB-4 panel.

- 1. Place the cable/connector and the switch terminals through the opening and press firmly into place.
- 2. Plug the cable on the TSW-2 into P9 on the SMB-2 after installing the SMB-2.

3. Pull All Field Wiring Into The Backbox

Pull all field wiring into the backbox and dress the wiring to the approximate location to which it will go. Refer to the *MSE-3L Power Limited Wiring Instructions,* P/N 315-095445.

4. Install the SMB-2 (*Refer to Figure 23*)

Unpack the SMB-2. Inspect the module, looking for such things as integrated circuits (ICs) not firmly seated in their sockets, bent IC pins, connectors not properly installed, dirt, packing material on the board, etc.

The installation kit consists of the following items:

Two #6 nuts Four #6 screws Six #6 washers Six #6 lockwashers Two resistors Battery cable with a wire

- a. Place the SMB-2 over the two studs in the upper right-hand portion of the backbox (See Figure 23).
- b. Secure in place using the hardware provided.

Be sure the screws and nuts are tight, as they provide the earth ground connection for the SMB-2

5. Install the MPS-6/12 *(See Figure 24)*

The MXL-IQ is designed to operate from a 120 VAC, 60 Hz power source. Use a separate or dedicated circuit-breaker. Wire in accordance with local codes and Article 760 of the NEC, NFPA 70, latest edition.

Run the earth ground from a suitable source to the MPS-6/12. Check local requirements. **Conduit is not an accept-able conductor.**

Make sure that the dedicated circuit-breaker for the MXL-IQ is turned off at the mains.

Place the mounting bracket for the MPS-6/ 12 over the two studs provided in the enclosure as shown in Figure 24.

Secure the MPS-6/12 to the MSE-3L by slipping the flat washers, then the

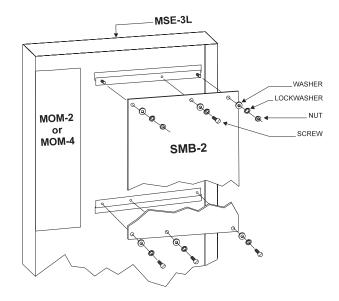


Figure 23 Installing the SMB-2

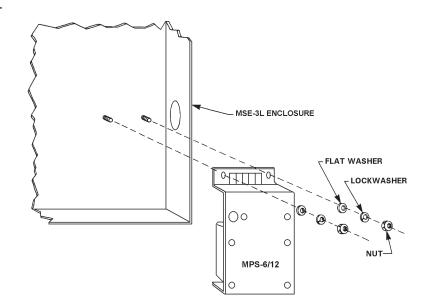


Figure 24 Installing the MPS-6

Installation

lockwashers, and finally the nuts over the two studs. Tighten them securely.

Connect the AC mains to MPS-6/12 as follows:

<u>Terminal</u>

Black (hot)	1
White (neutral)	2
Green (earth ground)	3

Install the 14 gauge green ground strap spade lug side to Terminal 3 (green, earth ground) of the MPS-6 or MPS-12. Secure the ring lug side of the ground strap to the nearest available stud in the enclosure. The stud size may vary depending on the actual system modules and enclosure used. Because the stud may be either a #10 thread of ¼" thread, nuts for both have been provided. The ground strap provided is long enough for all applications and the ring lug is good for both #10 and ¼" studs. If possible, install the ring lug under one of the lockwashers and nuts which secure the MPS-6 or MPS-12 itself.

Connect the 3-wire cable coming from the MPS-6 to the SMB-2, P1, or connect the 8-wire cable coming from the MPS-12 to the SMB-2, P14.250

6. Install the MKB-4 Keyboard/ Annunciator

Remove all system power before installation, first battery and then AC.

во	ARD ON BACK OF MKB-4	
O P1	S1	0
TO SMB-1/2, P8 OR TO PIM-1, P2 IF PIM-1 IS USED	ANN-1	
0		0

Figure 25 Setting S1 on the ANN-1 Board

Unpack the MKB-4. Inspect the module for such things as integrated circuits (ICs) not firmly seated in their sockets, bent IC pins, connectors not properly installed, dirt, and packing material on the board.

NOTE: The MKB-4 is supplied with the keyboard/annunciator mounted to the hinged panel.

Setting the Network Address (See Figure 25)

- a. Before installing the MKB-4 panel, set its network address on S1, the switch on the ANN-1 board located on the back of the MKB-4. Use dipswitches SW1 and SW2 on switch S1 to set the network address of the MKB-4. Refer to Table 2 for switch settings.
- b. The MKB-4 module address is always set within network addresses 248 through 251.
- c. One supervised MKB-4 must be installed at network address 251. Other supervised MKBs may be at the other addresses.

TABLE 2 SWITCH SETTINGS ON THE ANN-1				
	ADDRESS SETTINGS FOR:			
SWITCH	248	249	250	251
S1-SW1	Open- OFF	Closed- ON	Open- OFF	Closed- ON
S1-SW2	Open- OFF	Open- OFF	Closed- ON	Closed- ON
S1-SW3	Closed- ON	Closed- ON	Closed- ON	Closed- ON
S1-SW4	Closed- ON	Closed- ON	Closed- ON	Closed- ON
S1-SW5	-SW5 See Setting Supervision			
NOTE: Switches S1-SW3 and S1-SW4 are for future use. Switch S1-SW5 is used to select suptervision.				

Setting Supervision:

Use switch S1-SW5 on the ANN-1 to select or deselect supervision. If your ANN-1 has a switch with position 1 indicated on the left-hand side, ignore the printing on the switch. SW1 on S1 is at the extreme righthand side of S1, regardless of any other marking. **NOTE:** When you select non-supervision for an annunciator, there must also be **one and only one** supervised annunciator at the same address. The supervisory mode is independent of the network address.

To set for supervision

S1-SW5 = Closed (ON)

To set for non-supervision S1-SW5 = Open (OFF)

Mounting the MKB-4 (Refer to Figure 26)

- Install three screws in the first group of three tapped holes in the right flange. Leave a ¹/₈-inch gap between the head of the screw and the flange. Slide the slots of the MKB-4 panel hinge under the head of the screws and tighten.
- 2. After the MKB-4 is mounted to the enclosure, connect the cable (P/N 555-192238) between P1 on the ANN-1 (on the back of the MKB-4) and P8 on the SMB-2.

CAUTION:

Be sure the black tracer wire on the edge of the cable is close to the **1** on position 1 of connector P1 on the ANN-1 and the **1** on position 1 of P8 on the SMB-2.

7. Install the PIM-1, PIM-2, and PAL-1

PIM-1

- Install the PIM-1 on the back of the MKB-4 panel as shown in Figure 27. Position the PIM-1 so the TB1 is on the left side of the board.
- 2. Mount the PIM-1 module on the raised studs with the hardware provided.
- 3. Using the cable supplied with the PIM-1, connect PIM-1, P-1 to ANN-1, P1 (See Figure 27).
- 4. Using the cable supplied with the MKB-4, connect PIM-1, P2 to SMB-2, P8 (See Figure 27).

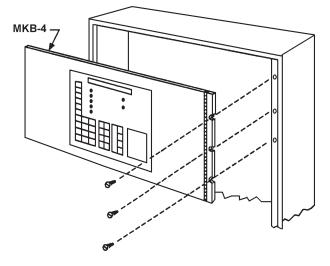


Figure 26 Installing the MKB-4 Keyboard/Annunciator

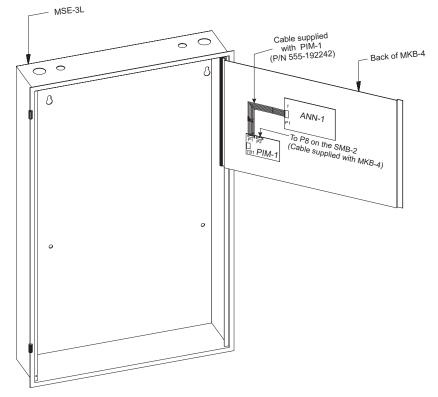


Figure 27 Installing a PIM-1 on the Back of an MKB-4

Installation

PIM-2/PAL-1

The PIM-2 and printer require a standby power source in the event of a loss of primary input power (AC mains). Refer to Figure 28 for the connection of a UPS to meet this requirement.

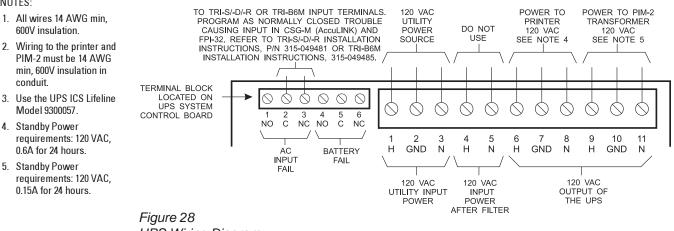
- 1. Before installing a PIM-2 in the MXL-IQ system, a PIM-1 must be already installed.
- 2. Wiring from the PIM-1 to the PIM-2 must be within 25 feet in rigid conduit (Refer to Table 3).

TABLE 3 PIM-1 TO PIM-2 INTERFACE REQUIREMENTS (Supplied by installer)				
PIM-1, TB	TO	PIM-2 Inpt Pin No.		
4 (Rx) 5 (Tx) 7 3 (BUSY) 2 (COMMON)		2 (TxD) 3 (RxD) 4, 5 (RTS, CTS) 20 (DTR) 7 (GRD)		
Use 18 AWG wire minimum.				

- 3. Figure 29 shows the proper installation of the PIM-2 with the MXL-IQ system.
- 4. Programming the CSG-M is required when using a PIM-2 and parallel printer. Configure one of the following four printer types on the MKB-4:

- Supervised PIM-2 132 column color
- Supervised PIM-2 80 column

Supervised PIM-2	132 column (for
PAL-1 and NFPA 72	Proprietary)


5. Set the dipswitches on the back of the PIM-2 to agree with the communications parameters configured in the CSG-M. Refer to Table 4 for the dipswitch definitions.

8. Install the MOM-2 or MOM-4

If a system requires the MOM-2 or MOM-4 optional card cage (Figures 10 and 11, page 20), now is the time to install it. Unpack the card cage and its attached backplate and inspect it, looking for such things as connectors not properly installed, dirt, and packing material on the board.

The MOM-2/4 installation kits include the following items

M0M-2	MOM-4
3 #10 nuts	4 #10 nuts
3 #10 flat washers	4 #10 flat washers
3 #10 lockwashers	4 #10 lockwashers
4 #6 x 7/16 screws	1 8-conductor ribbon cable
2 #6-32 x 5/16 screws	2 2-wire cables
1 8-conductor ribbon cable	4 card guides
2 2-wire cables	
2 card guides	

UPS Wiring Diagram

NOTES:

conduit

N	n	TΓ	= <	2.
- 13	v			

1.	Maximum cable
	distance from PIM-1 to
	PIM-2 cable is 25 feet.
	The two modules must
	be in the same room.

- The maximum distance from the PIM-2 to the parallel printer is 6 feet. The two modules must be in the same room.
- PIM-2 power (PWR) is connected to the 5 VDC, 600mA transformer supplied with the PIM-2. The transformer requires 120 VAC, 60 Hz, 0.5A max.
- For NFPA 72 Local, Auxiliary, and Remote Station configurations, connect the output of the PIM-2 to any UL listed EDP Centronics parallel printer.
- 5. The parallel printer must support the EPSON FX command set.
- 6. The PIM-2 input and output connectors are DB-25 female.
- Pressing RESET on the PIM-2 causes the unit to read the SW1 settings. The status LED is lit when the unit is powered. Do not use the COPY button.
- For NFPA Proprietary and UL 1076 configurations, use parallel printer Model PAL-1, a UL listed for fire Centronics parallel printer.
- 9. The parallel printer is supervised for AC, on/ off line, paper out, paper jam, and connection to the PIM-2.
- 10. The PIM-2 is supervised for power, connection to the printer, and connection to the PIM-1.
- 11. After loading paper in the PAL-1 printer, turn off the power and follow the steps below:
 - While pressing the LOAD PARK button, turn on the power to the PAL-1 printer.
 Continue pressing the LOAD PARK button for 5 seconds.
 - Release the LOAD PARK button.
 - The current setting will print.
 - When printing is completed, the ON LINE indicator will be lit. If the ON LINE indicator is not lit, press the ON LINE button.

PIM-2 POWER CABLE MUST BE IN CONDUIT

SERIAL	. INTERFA		TABLE MMUN	-	on pai	RAMET	ERS	
		Dipswit	ch Positi	on (SW1)	-Located	at rear o	of PIM-2	
	1	2	3	4	5	6	7	8
BAUD RATE 9600 4800 2400 1200 300	OFF ON OFF ON ON	ON ON OFF OFF ON	OFF OFF ON ON ON					
DATA BITS 8 7				OFF ON				
PARITY Even Odd					OFF ON			
PARITY Disable Enable						OFF ON		
FLOW CONTROL Hardware Software							OFF ON	
PORT TYPE								OFF

NOTE:

When setting Switch S1, OFF=UP=OPEN ON=DOWN=CLOSED ANN-1 MKB-4 10000-10000 PIM-1 SEE INSTL. INSTR P/N 315-091462 TB1 CABLE NOT SUPPLIED (SEE NOTE 1) SUPERVISED PARALLEL PRINTER (REAR VIEW) PIM-2 (REAR VIEW) (REFER TO TABLE 4) 120 VAC 60 Hz CENTRONICS PARALLEL SW1 OUTPUT INPUT PWR 1.11 E CABLE SUPPLIED WITH PIM-2 (SEE NOTE 2) SUPERVISED PIM-2 POWER TRANSFORMER — SUPPLIED WITH PIM-2 (SEE NOTE 3) (REFER TO NOTES 9 AND 10) THE CONNECTION IS NOT SUPERVISED FOR DATA INTEGRITY BETWEEN PIM-2 AND THE PRINTER. XFMR INSTALL IN UL LISTED GANGBOX

Figure 29 PIM-2 to MXL-IQ Wiring Diagram

To mount the MOM-2/4 in an MSE-3L enclosure:

- 1. Hold the MOM-2/4 so that terminal blocks TB2 and TB4 are on the left.
- 2. Place the module vertically on the mounting studs near the top left of the enclosure as shown in Figure 23 on page 2-3.
- 3. Fasten the MOM-2/4 in position with the No. 10 flatwashers, lockwashers, and nuts provided.

To install the card guides (See Figures 30 and 31):

Install the card guides included in the package using the #6 x 7/16 screws provided. (The MOM-4 is shipped with the

Figure 30 Installing the MOM-2 Card Guides

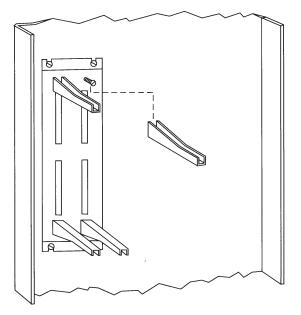


Figure 31 Installing the MOM-4 Card Guides

mounting screws for the card guides already installed.)

- 1. Mount the long screws.
- Make sure that the locating pin on the guide is seated in the hole on the MOM-2/4.
- 3. Tighten the screw.

Repeat this process for the remaining card guide(s). The MOM-2/4 is now ready to accept the optional modules. If the system does not require the installation of any half-width modules, install the two #6 x 5/16 screws in the center holes where the additional card guides would be placed.

Plug-in Cards for the MOM-2/4

Determine which optional plug-in modules are used in your CSG-M configuration. Next, decide where they should be installed by checking the following factors:

- 1. The size of each module. The CSM-4 and CRM-4 each occupy two adjacent slots.
- 2. How the field wiring will be installed.
- 3. The maximum load current permitted for the MOM-2/4 is 6 amps for the MPS-6 or 12 amps for the MPS-12. This current must be derated by the current drawn from SMB TB5 (CZM-1B6 power and NAC #1 and NAC #2). When the system includes an external auxiliary power supply, the maximum load current permitted depends on the application. Refer to Table 5 for the maximum current required by each module under full load conditions.

MOM-2/4 Electrical Installation

- 1. Attach the 8-conductor ribbon cable to P6 on the SMB-2, engaging the locking rib of the cable with the locking tab on P6.
- 2. Attach the other end of the 8-conductor ribbon cable to P7 on the MOM-2/4, engaging the locking rib of the cable with the locking tab on P7.
- 3. Connect one end of the 2-wire 24 VDC cable to P3 on the SMB-2, using the locking tab to lock the cable onto P3.

4. Connect the other end of the 2-wire cable into P5 on the MOM-2/4. The 2-wire cable that attaches P5 on the MOM-2/4 with P3 on the SMB-2 feeds 24 VDC full-wave unfiltered DC power to the MOM-2/4. This is the main power used by the optional modules. The 8-conductor ribbon cable supplies 5 VDC and communication between the SMB-2 and the MOM-2/4.

9. Install the MOI-7, MOD-16, and MID-16

M0I-7

1. Mount the MOI-7.

The MOI-7 mounts on a System 3 rail in two module spaces. Mount the MOI-7 using the four screws provided.

2. Set the network address on S1.

Set the address according to Table 16 at the end of this chapter so that it agrees with the address assigned in CSG-M.

3. Use P6 to set the mode for common alarm relay K1. (See Figure 17, page 1-10, for the location of P6.)

K1 is a common alarm relay that can be programmed to transfer back to normal when the MXL-IQ is silenced.

Use jumper P6 on the MOI-7 to select the desired mode according to the table below.

P6 Position	Mode
А	Alarm Relay Silenceable
В	Alarm Relay Non-silenceable

MOD-16 (See Figure 18, page 1-10)

- 1. Mount the MOD-16 in one System 3 type module space using the four screws provided.
- 2. Connect the MOD-16 to the MOI-7 with the 10-position ribbon cable P/N 555-190940 provided with the MOI-7.

	TABLE 5 MAXIMUM MODULE LOAD CURRENTS
ALD-2I	90mA (120 devices in alarm)
CMI-300	96mA
CRM-4	75mA (4 relays energized)
CSM-4	34mA (no alarm indicating appliances connected)
CZM-4	720mA (maximum with 4 zones in alarm)
NIM-1R	OmA

The following example assumes that no power is drawn from SMB-2 TB5 (CZM-1B6 power and NAC #1, NAC #2).

Example:

With 1 CZM-4 + 1 CRM-4 + 1 CSM-4, the total load current = 0.72 + 0.075 + 0.034 = 0.83A

The remaining available current = 12.0 (MPS-12) or 6.0 (MPS-6) - 0.83 = 11.83 (MPS-12) or 5.83 (MPS-6).

The remaining current may be used for NAC power.

3. If a connection to a MOD-16 module on another rail is required, use the optional cable P/N 555-190941.

MID-16 (See Figure 19, page 1-11)

- 1. Mount the MID-16 in one System 3 type module space using the four screws provided.
- 2. Connect the MID-16 to the module to its left with the 10-position ribbon cable P/N 555-190940 provided. This module may be either an MOI-7, MOD-16, or MID-16.
- 3. If a connection to a module on another rail is required, use the optional cable P/N 555-190941.

Screw T	erminal	Application
TB5	12-9	CZM-1B6 Power
TB5	8-5	Notification Appliance Circuit 2
TB5	4-1	Notification Appliance Circuit 1
TB4	6-4	Trouble Relay
TB4	3-1	Alarm Relay
TB3	4-1	Analog Loop 2
TB2	4-1	Analog Loop 1
TB1	1-2	MXL-IQ Network for MOI-7 and RCC-1/1F
TB1	3	Do Not Use
TB1	4-5	MPS-6/12 and MOM-2/4

WIRING		LE 7 /4 OPTIONAL MODULES
Module	Screw Terminal	Application
CSM-4	1-4 9-12	Notification Appliance Circuit 1 Notification Appliance Circuit 2
	-4 Installation Instruction	ns, P/N 315-090854, for a more als.
CRM-4	1-3 4-6 11-13 14-16	Dry Contact 1 Dry Contact 2 Dry Contact 3 Dry Contact 4
	 4 Installation Instruction on of the screw termination 	ns, P/N 315-090853, for a more als.
CZM-4	1-4 5-8 9-12 13-16	Conventional Zone 1 Conventional Zone 2 Conventional Zone 3 Conventional Zone 4
NOTE: See CZM description of the		ns, P/N 315-090726, for a more detailed
CMI-300	1-4	CXL Modem Connection
	300 Installation Instruction on of the screw termination	ons, P/N 315-091259, for a more als.
NIM-1W	1-2 3-4 12-16	XNET Network Pair A / FSI / AnaLASER XNET Network Pair B NCC XNET Interface
	1W Installation Instruction	ons, P/N 315-099165, for a more als.
ALD-2I	1-4 5-8	Analog Loop 1 Analog Loop 2
	21 Installation Instruction	ns, P/N 315-091464, for a more als.

10. Install Field Wiring

Wiring to the SMB-2

Refer to Table 6. Dress the field wiring that will be going to the SMB-2. Strip the insulation from the wiring, but *do not connect* the wires to the screw terminals.

Wiring to the MOM-2/4 Optional Modules (if Required)

Refer to Table 7. Dress the field wiring that will be going to the MOM-2/4 modules. Strip the insulation from the wiring and connect the wires to the appropriate screw terminals.

11. Check Field Wiring

Initiating Devices

Install all initiating device bases and end-ofline devices where applicable. Install all initiating devices. Refer to the specific installation instructions provided with each device.

Notification Appliances

Install all notification appliances (bells, strobes, etc.) Refer to the specific installation instructions provided with each device.

Check Resistance Between Wiring Circuits

Start with the wire that goes to TB5-12 on the SMB-2. Check the resistance between that wire and all other field wires that will be connected to the SMB-2. Also, check the resistance between that wire and all wires connected to the screw terminals on the MOM-2/4. Refer to Table 8 for acceptable resistance readings. If the readings are good, connect the wire to TB5-12. Repeat the above procedure for the next wire on the SMB-2.

When the SMB-2 is complete, continue with the MOM-2/4 (if it is installed).

12. Start Up Procedure

NOTE: Throughout this section, refer to the TROUBLESHOOTING GUIDE as an aid to resolving trouble conditions.

1. System Status

When beginning the start-up procedure, the condition of the system is as follows:

- All field wiring is connected to all screw terminals, except for the analog loops they should be disconnected. All field devices are installed.
- No modules are installed in the MOM-2/4 cage.

2. Create a Test Configuration

Create a test configuration on your CSG-M that includes every module that will be on your final system. Do not include any initiating devices. You will use this test configuration in checking out the System.

3. SMB-2 Checkout Minus the Analog Loops

Turn on the AC power to the system.

- The power light on the MKB-4 turns on
- the System displays the default message:

SIEMENS BUILDING TECHNOLOGIES MXL

Transfer the test configuration from your computer to the MXL-IQ. Refer to the *CSGM Manual* (P/N 315-090381) for the correct procedure.

After the transfer process is complete, MXL-IQ resets itself; after 5 minutes, the state of the system should be as follows:

- No trouble condition for the signaling circuits on the main board.
- A battery trouble condition if the battery option was selected.
- All optional modules configured on the system are in trouble since they are not yet installed.

4. SMB-2 Analog Loop Checkout

Modify your test configuration by adding to it the analog devices that are connected to analog loop 1.

- Turn off the power and connect the field wiring to analog loop 1 on the SMB-2.
- Turn on the power. Wait for the System to initialize (approximately 3 minutes).

SIV	TABLE 8 FIELD WIRING CHECKOUT SMB-2 EXTERNAL WIRING AND TROUBLESHOOTING GUIDE				
TB-5	Resistance Between Wires	Desired Results	Probable Cause Of Problem		
1.	Chassis to 1-12	>1 Meg	Short in wiring.		
2.	11 to 12	<1.5 ohms	Line open; Line too long.		
3.	9 to 10	<1.5 ohms	Line open; Line too long.		
4.	7 to 8	<1.5 ohms	Line open; Line too long.		
5.	5 to 6	<1.5 ohms	Line open; Line too long.		
6.	3 to 4	<1.5 ohms	Line open; Line too long.		
7.	1 to 2	<1.5 ohms	Line open; Line too long.		
8.	9 to 12	>1 Meg	Line shorted.		
9.	5 to 8	>1 Meg	Line shorted.		
10.	1 to 4	>1 Meg	Line shorted.		
11.	9-12 to 1-8	>1 Meg	Line shorted.		
12.	5-8 to 1-4	>1 Meg	Line shorted.		
13.	8 (+) to 5 (-)	2.2K± 10%	Line shorted; Line open; Wrong EOL device; No EOL device; Device wired backward; Device not polarized.		
14.	4(+) to 1 (-)	2.2K ± 10%	Line shorted; Line open; Wrong EOL device; No EOL device; Device wired backward; Device not polarized.		
15.	12 to 1-8 12 to TB2/3 1-4 12 to all MOM-2/4	>1 Meg >1 Meg >1 Meg	Line shorted.		
16.	8 to 1-4 8 to TB2/3 1-4 8 to all MOM-2/4	>1 Meg >1 Meg >1 Meg	Line shorted.		
17.	4 to TB2/3 1-4 4 to all MOM-2/4	>1 Meg >1 Meg	Line shorted.		
TB-2 and TB-3	Resistance Between Wires	Desired Results	Probable Cause Of Problem		
1.	Chassis to all terminals	>1 Meg	Short in wiring.		
2.	1 to 2	<50 ohms	Open in wiring; Line too long.		
3.	3 to 4	<50 ohms	Open in wiring; Line too long.		
4.	1 to 4	<.4µF	Too much wire.		
5.	1 (+) to 4 (-)	>10K ohms	Line shorted.		
6.	TB-2 (1-4) TB-3 (1-4)	>1 Meg	Line shorted.		
7.	TB-2 (1-4) TB-5 (1-12)	>1 Meg	Line shorted.		
8.	TB-3 (1-4) TB-5 (1-12)	>1 Meg	Line shorted.		
	(+) an	d (-) indicate meter lead = greater than: < = less t			

- Check the trouble list on the MKB for troubles on the devices that were just added. The troubles will be from among the following (See Appendix J for a complete list of Trouble Messages):
 - Device multiple response
 - Input device not responding
 - Incorrect device ID

Unspecified device responding

• Identify the addresses of the devices with troubles and eliminate them, reset the system, and verify that the troubles have cleared before proceeding.

Modify your test configuration by adding to it the analog devices that are connected to analog loop 2.

- Turn off the power and connect the field wiring to analog loop 2 on the SMB-2.
- Turn on the power. Wait for the System to initialize (approximately 3 minutes).
- Check the trouble list on the MKB for troubles on the devices that were just added. The troubles will be from among the following (See Appendix J for a complete list of Trouble Messages):

Device multiple response

Input device not responding

Incorrect device ID

Unspecified device responding

 Identify the addresses of the devices with troubles and eliminate them, reset the system, and verify that the troubles have cleared.

5. MOM-2/4 Optional Modules Checkout

Remove all system power before installing any optional module

(ALD-2I, CMI-300, CRM-4, CSM-4, CZM-4, NIM-1W).

Unpack each module just before installation. Inspect the module, looking for such things as integrated circuits (ICs) not firmly seated in their sockets, bent IC pins, connectors not properly installed, dirt, and packing material on the board.

To install the card guide that comes with the CRM-4 and the CSM-4 module:

a Loosen the appropriate screw in the center of the MOM-2/4 and set the card guide in place.

Make sure that the locating pin on the bottom of the card guide is in the hole on the MOM-2/4.

b. Tighten the screw on the MOM-2/4 to secure the card guide.

6. ALD-2I Checkout

Installing the ALD-2I

Set the address of each ALD-2I. Refer to the CSG-M printout of the final configuration for the address to which each ALD-2I should be set. Refer to the *ALD-2I Installation Instructions* (P/N 315-091464) to set the address dipswitch.

Install the ALD-2Is one at a time by inserting them in the appropriate card guides on the MOM-2/4. Make sure that the card is firmly seated in the card edge connector. Eliminate all troubles from each module before installing the next one.

Modify your test configuration by adding to it any initiating devices that are connected to the first analog loop on the ALD-2I.

Turn off the power; connect the field wiring to analog loop 1 on the ALD-2I. Turn on the power.

- Turn off the power and connect the field wiring to analog loop 1 on the SMB-2.
- Turn on the power. Wait for the System to initialize (approximately 3 minutes).
- Check the trouble list on the MKB for troubles on the devices that were just added. The troubles will be from among

the following (See Appendix J for a complete list of Trouble Messages):

Device multiple response

Input device not responding

Incorrect device ID

Unspecified device responding

• Identify the addresses of the devices with troubles and eliminate them, reset the system, and verify that the troubles have cleared before proceeding.

Modify your test configuration by adding to it any initiating devices that are connected to the second analog loop on the ALD-2I.

Turn off the power; connect the field wiring to analog loop 2 on the ALD-2I. Turn on the power.

- Turn off the power and connect the field wiring to analog loop 1 on the SMB-2.
- Turn on the power. Wait for the System to initialize (approximately 3 minutes).

 Check the trouble list on the MKB for troubles on the devices that were just added. The troubles will be from among the following (See Appendix J for a complete list of Trouble Messages):

Device multiple response

Input device not responding

Incorrect device ID

Unspecified device responding

 Identify the addresses of the devices with troubles and eliminate them, reset the system, and verify that the troubles have cleared before proceeding.

Installing the CMI-300 Interface Module

Before installing the CMI-300 in the MOM-2/4, you must do the following:

1. Check that there is a jumper installed for jumper J2, pins 1 and 2 on the CMI-300 module.

			TAB Panel Number Pro		(SW2)		
ADDR	87654321	ADDR	87654321	ADDR	87654321	ADDR	87654321
000	FSI	016	\$00X0000	032	S0X00000	048	SOXXOOOC
001	S000000X	017	SOOXOOOX	033	SOXOOOOX	049	SOXXOOOX
002	S00000X0	018	SOOXOOXO	034	SOXOOOXO	050	SOXXOOX
003	SOOOOXX	019	SOOXOOXX	035	SOXOOOXX	051	SOXXOOXX
004	SOOOOXOO	020	SOOXOXOO	036	SOXOOXOO	052	SOXXOXO
005	SOOOOXOX	021	SOOXOXOX	037	SOXOOXOX	053	SOXXOXOX
006	SOOOOXXO	022	SOOXOXXO	038	SOXOOXXO	054	SOXXOXXO
007	SOOOOXXX	023	SOOXOXXX	039	SOXOOXXX	055	SOXXOXXX
008	SOOOXOOO	024	SOOXXOOO	040	SOXOXOOO	056	SOXXXOO
009	SOOOXOOX	025	SOOXXOOX	041	SOXOXOOX	057	SOXXXOOX
010	SOOOXOXO	026	SOOXXOXO	042	SOXOXOXO	058	SOXXXOX
011	SOOOXOXX	027	SOOXXOXX	043	SOXOXOXX	059	SOXXXOXX
012	SOOOXXOO	028	SOOXXXOO	044	SOXOXXOO	060	SOXXXXO
013	SOOOXXOX	029	SOOXXXOX	045	SOXOXXOX	061	SOXXXXO
014	SOOOXXXO	030	SOOXXXXO	046	SOXOXXXO	062	SOXXXXX
015	SOOOXXXX	031	SOOXXXXX	047	SOXOXXXX	063	SOXXXXX
						064	SX000000
	S = Closed s	elects Style 7			0 = 0pe	n or OFF	

NOTE:

To open a dipswitch, press down on the side of the dipswitch marked OPEN.

To close a dipswitch, press down on the side of the dipswitch opposite the side marked OPEN.

To open a slide switch, push the slide to the side opposite the side marked ON.

To close a slide switch, push the slide to the side marked ON.

2. Set the CMI-300 network address by using the dipswitch settings on switch SW1. Use Table 16 at the end of this chapter to set the network address.

Plug the CMI-300 module in the MOM-2/4 card cage and connect the wiring as shown in the CMI-300 Installation Instructions, P/N 315-091259. Eliminate all troubles from each module prior to installing the next one.

Installing CRM-4 and CZM-4 Modules

Set the address of each module. Refer to the CSG-M printout of the final configuration for each module address setting. Refer to the installation instructions for each module to set the address dipswitch.

Install the optional modules one at a time by inserting them in the appropriate card guides on the MOM-2/4. Eliminate all troubles from each module prior to installing the next one.

Installing the NIM-1W Network Interface Module

The NIM-1W installs into the MOM-2/4 card cage where it occupies one full width slot. The wiring is connected to TB4 of the MOM-2 or TB3 of the MOM-4.

The NIM-1W has two configuration dipswitches. Set the dipswitches before installing the NIM-1W into the MOM-2/4.

Use switch SW1 to set the MXL-IQ network address. Set this switch according to the address where the NIM-1W is installed in the MXL-IQ's network map. Refer to the CSG-M configuration printout for the address of the module. See Table 16 at the end of this chapter for settings.

Use switch SW2 to set either the panel number for networked systems or to select FSI or Air Sampling operation. Refer to Table 9 for panel settings, Table 10 for FSI settings, or Table 11 for Air Sampling settings.

- When installing the NIM-1W in a networked system, set the panel number to agree with the panel number for the NIM-1W assigned to the MXL-IQ System in CSG-M.
- 2. Switch position 8 selects Style 4 or 7 operation for the NIM-1W network.

3. When installing the NIM-1W for FSI operation, set the switch to all open (or OFF).

FS	TABLE 10 I Programming
ADDR	87654321
000	00000000
	O = Open or OFF

4. When installing the NIM-1W for Air Sampling connection, set the switch as follows:

TABLE 11 Air Sampling Programming			
ADDR	87654321		
Air Sampling	X 0 0 0 0 0 0 0		
	Open or OFF Closed or ON		

After setting the switches, install the NIM-1W into the MOM-2/4 card cage. Make sure that the module is in the card guides and the card edge is firmly seated in the connectors on the MOM-2/4.

Installing the CSM-4 Signal Module

Before installing the CSM-4 in the MOM-2/4, you must set the network address, configure each circuit according to the CSG-M program [as Local (NACs), Municipal Tie, Leased Line, or Releasing Service], and set the default modes (trouble and alarm) as follows. Refer to Table 12 for the Modes of Operation.

a. Set the Network Address

The network address is set on dipswitch S1 (See Figure 12, page 1-8). See the CSG-M printout for the proper address. Use Table 16 at the end of this chapter to set the switches.

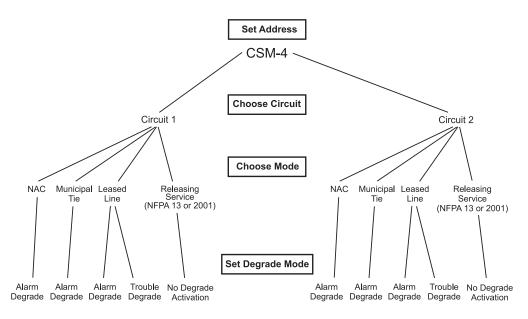


TABLE 12 Modes of Operation

b. Set the Mode of Operation for Each Circuit

The CSM-4 has one programming slide switch and one jumper for each of its two circuits. (See slide switches S3 and S4 and jumpers G1 and G2 on the CSM-4 board, Figure 12, page 1-8.) Setting these slide switches and jumpers allows the selection of four possible modes of operation. These modes correspond with NFPA standards 72 Local, Municipal Tie, Leased Line, and NFPA 13 and 2001 Releasing Service.

Each circuit on the CSM-4 can be set independently for the type of operation desired. Table 12 shows how to set the switches and jumpers for circuits 1 and 2. The CSG-M printout shows the mode for each circuit.

c. Set the Degrade Modes of Operation

There are two sources of degrade activation, the degrade alarm bus and the degrade trouble bus. These two buses *become active ONLY when* the MXL-IQ communication network fails. Dipswitch S2 on the CSM-4 sets the degrade mode of operation for each circuit.

TABLE 13 Setting the Mode of Operation for the CSM-4 (Using S3, S4 and G1, G2)

For Circuit 1	S3 Position	G1
Audibles [NAC] (NFPA 72 Local) Municipal Tie (NFPA 72) Leased Line (NFPA 72 Remote Station) Releasing Service (NFPA 13)* Releasing Service (NFPA 2001)* Illegal (Results in a trouble on the CSM-4)	1 1 2 1 1 2	Not Cut Cut Not Cut Cut Cut Cut
For Circuit 2	S4 Position	G2

 * CANADA ONLY: Do not cut jumpers G1 and G2 for NFPA 13 and NFPA 2001.

Each circuit operates independently in the degrade mode. Dipswitch S2, positions SW1 and SW2, determines the degrade mode of operation when the trouble bus activates. Dipswitch S2, positions SW3-SW6, determines the degrade mode of operation when the alarm bus activates.

d. Degrade Trouble Activation

The degrade trouble bus may ONLY be used when the circuit is used as a Leased Line **trouble** indicating circuit. (See Table 12.) When enabled, this trouble degrade mode ensures that a trouble will be transmitted to the receiving station even when the MXL-IQ communication network fails.

Using the CSG-M printout, determine if either of the circuits is configured as a Leased Line trouble. Table 14 shows how to set dipswitch S2 (SW1 and SW2) to enable the degrade trouble activation for the desired circuit.

TABLE 14 Setting the Degrade Trouble Modes for the CSM-4 on S2			
SW1 For Circuit 1 G1			
Leased Line Trouble No Trouble Activation	On (Closed) Off (Open)		
For Circuit 2	SW2 G2		
Leased Line Trouble No Trouble Activation	On (Closed) Off (Open)		

Note:

If Circuit 1 or Circuit 2 is not used for Leased Line trouble, switches SW1 or SW2 must be off (open).

e. Degrade Alarm Activation

Each circuit on the CSM-4 can be set with dipswitch S2, positions SW3-SW6, to determine when the degrade alarm bus activates (See Table 12). There are three degrade alarm modes. Each circuit can be set independently from the other.

TABLE 15Setting the Degrade Alarm Modes for the CSM-4 on S2				
For Circuit 1	SW4	SW3		
OFF (no degrade activation) CONTINUOUS (active on degrade alam) 1 SEC ON, 1 SEC OFF (infinite repeat) DO NOT USE	OFF (Open) OFF (Open) ON (Closed) ON (Closed)	OFF (Open) ON (Closed) OFF (Open) ON (Closed)		
For Circuit 2	SW4	SW3		
OFF (no degrade activation) CONTINUOUS (active on degrade alam) 1 SEC ON, 1 SEC OFF (infinite repeat) DO NOT USE	OFF (Open) OFF (Open) ON (Closed) ON (Closed)	OFF (Open) ON (Closed) OFF (Open) ON (Closed)		

NOTE: When circuits are used for leased line supervisory, the alarm degrade modes must be OFF (Open).

Determine which type of degrade mode you want for each circuit and set dipswitch S2 (SW3-SW6) as shown in Table 15.

13. System Function Checkout

The status of the MXL-IQ before checkout must be as listed below:

- 1. AC and battery power connected and turned on.
- 2. All modules installed and all field wiring connected.
- 3. All initiating devices installed and addressed.
- 4. All field wiring checked out.
- 5. The start-up procedure completed.
- 6. An CSG-M printout of the summary of the System Configuration available.
- 7. For documentation purposes, set the MXL-IQ time before proceeding.
- 8. Transfer the final version of the System Configuration to MXL-IQ.

Follow the steps listed in **System Opera**tion Checkout.

System Operation Checkout

Prior to activating any initiating device, take steps to prevent output circuits from being activated. Failure to do so may result in building EVAC (bells), notification of fire department, elevator recall, etc.

Test these operations in accordance with local codes and follow the direction of the authority having jurisdiction. Observe all safety precautions.

<u>Test</u>

- 1. Observe the display on the MKB-4.
- The POWER LED should be on steady.
- The TROUBLE LED should be off.
- The following message should appear on the alphanumeric display:

Response

(Time and Date)	SYSTEM
(System Custom Message)	NORMAL

(It may take a few minutes after power-up before the message *System Normal* appears.)

2. Activate every alarm causing initiating device on the System in groups of 100 or fewer. Reset the System prior to activating each group of 100.

3. Activate all supervisory devices on the System.

- Every device alarms and there are no troubles annunciated.
- Device LEDs should come on when the device is in alarm.
- As each device is alarmed, the custom message appears on the display, is recorded on the printer (if installed), and corresponds to the CSG-M printout for that device.
- The messages listed on the printer are in the order in which the devices were alarmed.
- Pressing the **NEXT** key on the MKB-4 displays the devices in reverse order.
- Check that all appropriate responses are activated.
- Each device should cause a supervisory.
- As each device changes state, the custom message appears on the display, is recorded on the printer (if installed), and corresponds to the CSG-M printout for that device.
- The messages listed on the printer are in the order in which the devices were activated.
- Pressing the **NEXT** key displays the devices in reverse order.
- Check that all the appropriate responses are activated.
- 4. Activate all security devices on the System.
- Each device should cause a security condition.
- As each device is activated, the custom message appears on the display, is recorded on the printer (if installed), and corresponds to the CSG-M printout for that device.
- Check that all appropriate responses are activated.

|--|

- 5. Activate all status devices on the System.
- None of the devices should cause an alarm or trouble condition.

Response

- If there is a printer, the System should print the status of reporting devices.
- As each device is activated, the custom message recorded on the printer corresponds to the CSG-M printout for that device.
- Check that all appropriate responses are activated.

6. CRM-4 relays:

• Verifies proper operation of the connected relay.

Refer to **Control Output On/Off**, page 3-38, and toggle each CRM-4 relay assigned to the System.

Reset the System when this test is complete.

7. CSM-4 relays:

Refer to **Control Output On/Off**, page 3-38, and toggle each CSM-4 relay assigned to the System.

Reset the System when this test is complete.

8. System Functions:

Check all functions that are defined in the customer specifications.

• Verifies proper operation of the connected relay.

- Check that the correct relationships between initiating devices and output functions occur as defined by the customer specifications.
- Check that the appropriate NFPA and local codes are met (Refer to the CSG-M Logical Function Summary.)

TABLE 16

NETWORK ADDRESS PROGRAMMING TABLE

NETWORK ADDRESS PROGRAMMING TABLE							
ADDR	87654321	ADDR	87654321	ADDR	87654321	ADDR	87654321
000	ILLEGAL	064	0X000000	128	X0000000	192	XX000000
001	ILLEGAL	065	0x00000x	129	x000000X	193	xx00000x
002	ILLEGAL	066	0X0000X0	130	X00000X0	194	XX0000X0
003	000000XX	067	0X0000XX	131	XOOOOOXX	195	XXOOOOXX
004	000000000	068	00000000	132	X0000X00	196	XX000X00
005	00000X0X	069	0X000X0X	133	XOOOOXOX	197	XXOOOXOX
006	00000XX0	070	0X000XX0	134	X0000XX0	198	XXOOOXXO
007	00000XXX	071	0X000XXX	135	X0000XXX	199	XXOOOXXX
008	0000X000	072	0X00X000	136	X000X000	200	XX00X000
009 010	0000X00X 0000X0X0	073 074	0X00X00X 0X00X0X0	137 138	X000X00X X000X0X0	201 202	XXOOXOOX XXOOXOXO
010	0000X0XX	074	0X00X0X0	130	XOOOXOXX	202	XXOOXOXX
012	0000XX00	076	0X00XX00	140	X000XX00	204	XXOOXXOO
013	0000XX0X	077	ΟΧΟΟΧΧΟΧ	141	XOOOXXOX	205	XXOOXXOX
014	0000XXX0	078	οχοοχχο	142	хооохххо	206	ххоохххо
015	0000XXXX	079	ΟΧΟΟΧΧΧΧ	143	XOOOXXXX	207	XXOOXXXX
016	0000000	080	0X0X0000	144	X00X0000	208	XX0X0000
017	000X000X	081	0X0X000X	145	XOOXOOX	209	XXOXOOOX
018	000X00X0	082	0X0X00X0	146	XOOXOOXO	210	XXOXOOXO
019	000X00XX	083	0X0X00XX	147	XOOXOOXX	211	XXOXOOXX
020	000X0X00	084	0X0X0X00	148	X00X0X00	212	XXOXOXOO
021	000X0X0X 000X0XX0	085	0X0X0X0X	149	XOOXOXOX	213	XXOXOXOX
022 023	0000000000	086	0X0X0XX0 0X0X0XXX	150 151	XOOXOXXO XOOXOXXX	214 215	XXOXOXXO XXOXOXXX
023	00000000	087 088	0X0XX000	151	X00XX000	215	XX0XX000
024	000000000000000000000000000000000000000	089	0X0XX000	152	XOOXXOOX	210	XXOXXOOX
026	000XX0X0	090	0X0XX0X0	154	XOOXXOXO	218	XXOXXOXO
027	000XX0XX	091	οχοχχοχχ	155	XOOXXOXX	219	ххоххохх
028	000XXX00	092	0X0XXX00	156	XOOXXXOO	220	XXOXXXOO
029	000XXX0X	093	ΟΧΟΧΧΧΟΧ	157	XOOXXXOX	221	XXOXXXOX
030	000XXXX0	094	ΟΧΟΧΧΧΧΟ	158	XOOXXXXO	222	XXOXXXXO
031	000XXXXX	095	OXOXXXXX	159	XOOXXXXX	223	XXOXXXXX
032	00X00000	096	0XX00000	160	X0X00000	224	XXX00000
033	00X0000X 00X000X0	097	0XX0000X 0XX000X0	161	X0X0000X X0X000X0	225 226	XXX0000X XXX000X0
034 035	000000000000000000000000000000000000000	098 099	000000000000000000000000000000000000000	162 163	XOXOOOXX	220	XXXOOOXX
035	00X00X00	100	0XX00X00	164	X0X00X00	228	XXX00X00
037	00X00X0X	101	0XX00X0X	165	XOXOOXOX	229	XXXOOXOX
038	00X00XX0	102	οχχοοχχο	166	ΧΟΧΟΟΧΧΟ	230	хххооххо
039	00X00XXX	103	ΟΧΧΟΟΧΧΧ	167	XOXOOXXX	231	XXXOOXXX
040	00X0X000	104	0000000	168	XOXOXOOO	232	XXXOXOOO
041	00X0X00X	105	0XX0X00X	169	XOXOXOOX	233	XXXOXOOX
042	00X0X0X0	106	0XX0X0X0	170	XOXOXOXO	234	XXXOXOXO
043	00X0X0XX	107	OXXOXOXX	171	XOXOXOXX	235	XXXOXOXX
044	00X0XX00	108	0XX0XX00	172	XOXOXXOO	236	XXXOXXOO
045	00X0XX0X 00X0XXX0	109 110	0XX0XX0X 0XX0XXX0	173 174	XOXOXXOX XOXOXXXO	237 238	XXXOXXOX
048	000000000000000000000000000000000000000	110	0XX0XXXX	174	XOXOXXXX	230	XXXOXXXX
047	0000000	112	0XXX0000	175	X0XX0000	239	XXXX0000
049	00XX000X	113	0XXX000X	177	XOXXOOOX	241	XXXXOOOX
050	00XX00X0	114	0XXX00X0	178	XOXXOOXO	242	XXXXOOXO
051	00XX00XX	115	ΟΧΧΧΟΟΧΧ	179	XOXXOOXX	243	XXXXOOXX
052	00XX0X00	116	0XXX0X00	180	XOXXOXOO	244	XXXXOXOO
053	OOXXOXOX	117	OXXXOXOX	181	XOXXOXOX	245	XXXXOXOX
054	00XX0XX0	118	0XXX0XX0	182	XOXXOXXO	246	XXXXOXXO
055	00XX0XXX	119	OXXXOXXX	183	XOXXOXXX	247	XXXXOXXX
056	00XXX000 00XXX00X	120	0XXXX000 0XXXX00X	184	XOXXXOOO XOXXXOOX	248	ILLEGAL ILLEGAL
057 058	00XXX0X0	121 122	0XXXX0X0	185 186	XOXXXOXO	249 250	ILLEGAL
058	00XXX0XX	122	0XXXX0X0	187	XOXXXOXX	250	ILLEGAL
060	00XXXX00	123	0XXXXX00	188	XOXXXXOO	252	ILLEGAL
061	00XXXX0X	125	ΟΧΧΧΧΧΟΧ	189	XOXXXXOX	253	ILLEGAL
062	00XXXXX0	126	0XXXXXX0	190	XOXXXXXO	254	ILLEGAL
063	00XXXXXX	127	OXXXXXXX	191	XOXXXXXX	255	ILLEGAL
		0 = 0	PEN (or OFF)	X = CLOS	SED (or ON)		

O = OPEN (or OFF) X = CLOSED (or ON)

Chapter 3

Operation

This section provides instructions for operating the MXL-IQ Control Panel. Please review the introduction to the MXL-IQ Control Panel at the beginning of this manual.

NOTE: See the Table of Contents pages at the beginning of this manual for the order of this chapter. Use it to find the answers to specific questions when you are working with the System.

Addresses

All modules and devices annunciated on the MXL-IQ are identified by an address (*MMM-DDD*). Each address is in two parts—a module address (*MMM*) and a device address (*DDD*). The number identifying the module may be as high as 254, and the number identifying the device may be as high as 248. Thus a device on a module may be identified by any number between 001-001 and 253-250. (See Table 17.)

Fixed Addresses

A module may be assigned to any address on the System, except for some fixed addresses that have already been assigned (See Table 17). The modules communicate to the MXL-IQ Control Panel through a serial communications network. The System continuously supervises all of the modules for presence and proper operation.

You may assign a module to any address on the System, and assign addresses in any order, mixing different types of modules and leaving gaps in the numbering, provided you do not use the fixed addresses.

The specific addresses of the System modules are described in Table 17.

TABLE 17 Fixed Module Addresses			
Module Address	Module	Device Address (Range)	
0	Do not use		
1	Analog loop 1 (SMB-2)	001-060	
2	Analog loop 2 (SMB-2)	001-060	
3			
*			
*			
*			
248	МКВ		
249	МКВ		
250	МКВ		
251	MKB, No. 1		
252	Reserved		
253	SMB-2	001 to 250	
254	Programmer CSG-M		
255	Global (reserved)		

INTRODUCTION

System Modules

ALD-2I Analog Loop Module

The ALD-2I takes two adjoining module addresses. Loop 1 of the ALD-2I is at any module address and loop 2 at the next address. The analog loops on the SMB-2 are at module addresses 1 and 2 (See Table 17, page 3-1) and cannot be moved. The table below illustrates ALD-2I module addresses:

ALD at Module

Addresses 3 and 4	Devices
Loop 1	003-001 to 003-060
Loop 2	004-001 to 004-060

ALD at Module

Addresses 15 and 16	Devices
Loop 1	015-001 to 015-060
Loop 2	016-001 to 016-060

CSM-4 Signal Module

The CSM-4 module contains two circuits and two programmable LEDs.

Their device addresses on the module are as follows:

Circuit 1	001
Circuit 2	002
LED 1	005
LED 2	006

For example, the address of circuit 2 on the CSM-4 at module address 3 is 003-002.

CRM-4 Relay Module

The CRM-4 Relay module contains four relays and two controllable LEDs.

Their device addresses on the module are as follows:

Relay 1	001
Relay 2	002
Relay 3	003
Relay 4	004
LED 1	005
LED 2	006

For example, the address of relay 4 on the CRM-4 at module address 20 is 020-004.

CZM-4 Conventional Zone Module

The CZM-4 Conventional Zone module contains four conventional initiating device zones and two programmable LEDs. Their device addresses on the module are as follows:

Zone 1	001
Zone 2	002
Zone 3	003
Zone 4	004
LED 1	005
LED 2	006

For example, the address of zone 1 on the CZM-4, at module address 105, is 105-001.

MKB Keyboard/Annunciator

The MKB Keyboard/Annunciator occupies the fixed module address 251 (See Table 17, page 3-1).

SMB-2 Main Board

The SMB-2 occupies module addresses 1, 2, and 253. The module addresses 1 and 2 are analog loops.

Module address 253 contains two notification appliance circuits (NACs) and two relays. The device addresses at module 253 are as follows:

Common alarm relay	001
Common trouble relay	002
NAC 1	004
NAC 2	005

For example, the address of the common alarm relay at module address 253 is 253-001.

Remote System Modules

MOI-7 Voice and Annunciator Driver

The MOI-7 occupies one network address and one network node in the MXL-IQ System. Set the address on S1 (See Figure 17, page 1-10) according to Table 16, page 2-19, so that it agrees with the address assigned in CSG-M.

The MOI-7 has a set of 128 subaddresses reserved for the MOD-16 open collector

outputs and MID-16 general purpose inputs. This gives a maximum of 8 MOD-16 boards and 8 MID-16 boards.

The MOI-7 subaddress map is as follows.

001-016	MOD-16/MID-16	#1
017-032	MOD-16/MID-16	#2
033-048	MOD-16/MID-16	#3
049-064	MOD-16/MID-16	#4
065-080	MOD-16/MID-16	#5
081-096	MOD-16/MID-16	#6
097-112	MOD-16/MID-16	#7
113-128	MOD-16/MID-16	#8

The MOI-7 has two status LEDs:

The TRANSMIT LED indicates that the MOI-7 is sending information to the SMB-2. During normal operation this LED flashes periodically when the SMB-2 requests the MOI-7's status.

The TROUBLE LED only lights when the MOI-7 cannot communicate with the MXL-IQ. This is an indication that the network connection between the MOI-7 and SMB-2 is damaged.

MOD-16 (Open Collector Output Module)

The MOD-16 does not occupy a network address. The MOD-16 is at a subaddress of the MOI-7 to which it is connected. The subaddresses of any given MOD-16s are determined by their position in the string of MOD-16s.

The output cable from the MOI-7 connects to the first MOD-16, which has the subaddress of 001-016 as shown above. Each additional MOD-16 in the chain has the next block of 16 addresses.

You may connect a maximum of 8 MOD-16s and MID-16s to an individual MOI-7 for a total of 128 open collector outputs and 128 general purpose inputs.

Using The MKB-4 Keyboard/Annunciator Panel in Local Mode

See Figure 32, page 3-4, for the location of the display keys and LEDs.

When the MKB-4 Keyboard/ Annunciator Panel is installed, only the display, LEDs, and display control keys are visible. The ACKnowledge keys and other controls are hidden behind a locked door. Unlock and open the door to gain access to those keys and controls.

The Display

The display has two lines of 40 characters each. What is shown on the display depends on the state of the System. The display contains a back light which turns on automatically when any key is pressed or an event is reported. The back light turns off automatically after 5 minutes of system inactivity.

The System has several displays. When the System is Normal, the display shows:

[time/date]	SYSTEM
[system message]	NORMAL

When an event has been annunciated, the System alternates between the following three displays:

Eaddressl Ecustom messagel EACK STATUS or BLANKl
Eevent numberl Edevice typel Etrouble typel EIN or DUTl

Eaddressl Etype of device in troublel or EBLANKl EACK
STATUS or BLANKl Eevent numberl Etime/datel EIN or OUTl

ALARMS=nnn	SUPERVISORIES=nnn	
SECURITIES=nnn	TROUBLES=nnn	

The terms used in the displays described above are defined as follows:

- ACK appears if the event has been acknowledged; otherwise, the field is blank.
- IN is displayed when a condition occurs.
- **OUT** is displayed when a normal state is restored.
- [time/date] shows the time and date the event occurred.

Internal Audible Alarm

The internal audible alarm (not visible) sounds steadily when there is an unacknowledged fire alarm. It pulses if all alarms are acknowledged, but there is at least one supervisory, security condition or trouble.

(1) The Display

A 2-line display of 40 characters each that shows the state of the System. A back light turns on when any key is pressed or an event is reported.

(2) System Control Keypad

ALARM ACK - Press to acknowledge a fire alarm.

AUD SIL - Press to silence or unsilence a notification appliance circuit.

SUPV ACK - Press to acknowledge a supervisory.

TRBL ACK - Press to acknowledge a trouble.

SEC ACK - Press to acknowledge a security condition.

RESET - Press to reset the System.

3 Numeric Keypad

Use the numeric keypad (keys 0 through 9) when the System asks for a model number, device number, password, time, date, or other information. The display shows each number as you press the key (except when you enter a password; the System shows an asterisk for each digit of the password that you type).

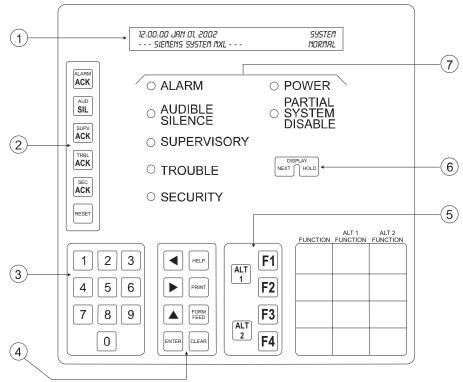


Figure 32 MKB-4 Keyboard/Annunciator Panel

4 Command Keypad

Left arrow (4) - Press to select the item to the left of what is flashing on the display (unless entering a number).

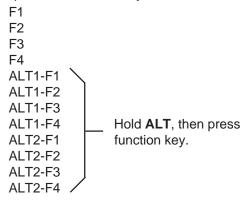
Right arrow (▶) - Press to select the item to the right of what is flashing on the display (unless entering a number).

Up arrow (▲) - Press to go back to the previous item.

ENTER - Press to select the item on which the cursor is flashing. When typing in numbers, press **ENTER** when finished to complete the entry.

PRINT - Press to print selected lists and reports.

FORM FEED - Press to advance the paper in the printer.


CLEAR - Press to cancel printing begun by pressing **PRINT**. The System will print:

This listing prematurely terminated.

HELP - Press to display a one-line help message.

(5) The Special (ALT and Function) Keypad

Use the four function keys alone or in combination with **ALT1** or **ALT2** to provide a total of 12 special functions. When using a combination, hold the ALT key down and then press the function key.

The special function keys are defined using the CSG-M Custom Software Generator (See CSG-M Programming Manual, P/N 315-090381). These definitions can be recorded in the box on the panel.

6 Display Keys

The MXL-IQ has two display keys, **NEXT** and **HOLD**, located on the MKB-4.

NEXT - Press NEXT to show the previous item in a list of Alarms, Supervisories, Troubles, or Security conditions.

HOLD - Press HOLD at any time to freeze the present display. The display remains frozen until HOLD is released.

(7) LEDs

ALARM - This red LED flashes when there is at least one unacknowledged fire alarm; it glows steadily when all fire alarms are acknowledged.

AUDIBLE SILENCE - This red LED flashes when at least one notification appliance circuit (NAC) is active; it glows steadily when all silenceable NACs are silenced. Under normal conditions, the LED is off.

SUPERVISORY - This yellow LED flashes when there is at least one unacknowledged supervisory; it glows steadily when all supervisories are acknowledged.

TROUBLE - This yellow LED flashes when there is at least one unacknowledged trouble; it glows steadily when all troubles are acknowledged.

SECURITY - This yellow LED flashes when there is at least one unacknowledged security condition; it glows steadily when all security conditions are acknowledged.

POWER - This green LED glows steadily to indicate that the AC power is on; it flashes when the System is on battery backup.

PARTIAL SYSTEM DISABLE - This yellow LED glows steadily when any device is disabled.

Modes Of Operation

The MXL-IQ alphanumeric display annunciator has five modes of operation:

- 1. Alarm
- 2. Supervisory
- 3. Security
- 4. Trouble
- 5. Normal

INTRODUCTION

This order ensures that fire alarms always take priority over all other conditions. In turn, supervisories always take priority over security conditions and security conditions always take priority over troubles. All of the above modes take priority over Normal mode, which is the absence of any alarms, supervisories, security conditions, or troubles.

Alarm

The alphanumeric display shows an alarm message when a fire alarm is received. See **Alarm**.

Supervisory

The alphanumeric display shows a supervisory message when the system receives a supervisory and no higher priority event is present. See **Supervisories**, page 3-8.

Security

The alphanumeric display shows a security message when a security condition is received and no higher priority event is present. See **Security Conditions**, page 3-9.

Trouble

The alphanumeric display shows a trouble message when a trouble is present and no higher priority event is present. See **Troubles**, page 3-10.

Normal Mode

Normal mode is the absence of any alarms, supervisories, security conditions or troubles.

In normal mode the display shows the following message:

11:59:59	DEC	31, 20%	ХX	SYSTEM
[custom	syste	m messa	agel	NORMAL

The **POWER** LED glows steadily in normal mode when the system has AC power. The **ALARM, AUDIBLE SILENCE, SUPERVI-SORY, TROUBLE,** and **SECURITY** LEDs are off and the internal audible is off.

If your System has the printer option, the System prints a message in the following format every day at midnight, even when there are alarms or other conditions: System Status at 00:00:00 Jul 02, 20XX

0	ALARM	0	ALARM ACK
0	SUPERV	0	SUPERV ACK
0	SECURITY	0	SECURITY ACK
0	TROUBLE	0	TROUBLE ACK

Alarm

RESPONDING TO AN ALARM

- 1. Follow the response plan approved by the local authority having jurisdiction.
- 2. When the MXL-IQ is installed, the **ACK**nowledge key and Audible Alarm Silence key (**AUD SIL**) on the MKB-4 are behind a locked door. The display, LEDs, and display control keys are visible and accessible. To acknowledge an alarm or trouble, or to silence an audible alarm, first unlock and open the door.

How The System Annunciates Fire Alarms

When a fire is detected, the System causes the **ALARM** LED on the MKB-4 to flash, the System's internal audible to sound, the **AUD SIL** LED to flash, and the alphanumeric display on the MKB-4 to alternate in a sequence among the three messages shown below. This example assumes that two fire alarms were received (Refer to the explanations below).

Message 1:

1-00	ן נ	E cust	om m	ess	sage	⊇]
002	Ec	device	typ	e∎	ΙN	ALR

Message 2:

1-001	<pre>[custom message]</pre>	
002 Et	ime/datel IN ALR	

Message 3:

ALARMS=002	SUPERVISORIES=000
SECURITIES=DDD	TROUBLES=000

In addition, the System responds to alarms with programmed output functions such as other audible signals. In the messages above, **1-001** represents the address of the device reporting the alarm.

NOTE: On the display, not all leading zeros are shown. If your System includes a printer, note that the leading zeros are not shown.

002 in the first message tells you that this is the second (and the most recent) of two alarms received.

The status information in the third message reports the total of alarms, supervisories, troubles, and security conditions.

If your System includes a printer, it prints a message from two to four lines long similar to the following:

```
ALARM 1-1 11:59:59 DEC 31, 20XX
#1 [custom message], [device type]
```

In the preceding printed message, **ALARM** indicates that the type of occurrence is a fire alarm; **1-1** is the device address; **#1** is the number of the alarm in the list of fire alarms; *[custom message]* is a custom message entered using the CSG-M Custom Software Generator (See the CSG-M Programming Manual, P/N 315-090381); *[device type]* is the type of device which reported the alarm.

Viewing the List of Alarms

To see the alarm list when there is more than one alarm, press **NEXT** on the MKB-4 (the System displays the most recent alarm first).

How to Block Acknowledge a Fire Alarm (NFPA 72 Local, Municipal Tie, and Remote Station)

- Note the specific location of the alarm(s) by using the procedures described above.
- 2. Unlock and open the door.
- 3. Press **ALARM ACK** to acknowledge **all** alarms. The System displays the following message:

ALL ALARMS ACKNOWLEDGED.

If your System includes the printer option, it prints the following message:

ACK ALARM 11:59:59 DEC 31,20XX ALL ALARMS ACKNOWLEDGED 5. If you press **ALARM ACK** again, the System displays ALL ALARMS ACKNOWLEDGED.

The **ALARM** LED glows steadily to indicate that all alarms are acknowledged. If there are no supervisories, troubles, or security conditions in the System, the internal audible goes silent; if any of those conditions still exist, the internal audible pulses.

How to Individually Acknowledge a Fire Alarm (NFPA 72 Proprietary, UL 1076)

1. Press **ALARM ACK**. The System acknowledges the alarm displayed and then displays the next unacknowledged alarm.

If your System has the printer option, it prints an alarm acknowledgment message similar to the following:

ACK	ALARM	1-5	15:01:5	28 DEC	37''50XX
#2	E custor	n mes	sagel₁	Edevi	e type]

Note that the acknowledgments message includes the term ACK to indicate this alarm was acknowledged.

2. Continue acknowledging alarms as explained above until the System displays the following message: ALL ALARMS ACKNOWLEDGED.

The **ALARM** LED glows steadily to indicate that all alarms are acknowledged. If there are no supervisories, troubles, or security conditions still in the System, the internal audible goes silent; if any of those conditions still exist, the internal audible pulses.

3. If your System includes a printer, it prints a message similar to the following:

```
ACK ALARM 12:05:44 DEC 31,20XX
ALL ALARMS ACKNOWLEDGED
```

Silencing The System

Press **AUD SIL** after all alarms are acknowledged. The System displays the following message: AUDIBLES SILENCED. (Pressing **AUD SIL** a second time causes the internal audible and the System to unsilence and the message AUDIBLES UNSILENCED to appear on the display; thus, pressing **AUD**

SIL alternately silences and unsilences the System.)

If your System has a printer, it prints a message similar to the following:

AUD SILENCED/UNSIL. 11:01:00 DEC 31, 20XX AUDIBLES SILENCED

Supervisories

How The System Annunciates Supervisories

When a supervisory is detected, the System causes the **SUPERVISORY** LED on the MKB-4 to flash, the System's internal audible to sound, and the alphanumeric display on the MKB-4 to alternate in a sequence among the three messages shown below. This example assumes that two supervisories were received (See the explanations below).

Message 1:

l-OOl *Ecustom messagel* OO2 Edevice typel IN SUP

Message 2:

l-OOl *Ecustom messagel* OO2 Etime/datel IN SUP

Message 3:

SECURITIESDODSECURITIESSECURITIESDODSECURITIES

In addition, the System responds to supervisories with programmed output functions such as other audible signals.

In the messages above, **1-001** represents the address of the device reporting the supervisory.

002 in the first message tells you that this is the second (and the most recent) of two supervisories received.

The status information in the third message reports the total of alarms, supervisories, troubles, and security conditions. If your System includes a printer, it prints a message from two to four lines long similar to the following:

SUPERV 1-1 11:59:59 DEC 31, 20XX
#1 [custom message], [device type]

In the preceding message, **SUPERV** indicates that the type of occurrence is a supervisory; **1-1** is the device address; **#1** is the number of the supervisory in the list of supervisories; **[custom message]** is a custom message entered using the CSG-M Custom Software Generator (See the CSG-M *Programming Manual*, P/N 315-090381); **[device type]** is the type of device which reported the supervisory.

Viewing the List of Supervisories

To see the supervisory list when there is more than one supervisory, press **NEXT** on the MKB-4 (the System displays the most recent supervisory first).

How to Block Acknowledge a Supervisory (NFPA 72 Local, Municipal Tie, and Remote Station)

- 1. Note the specific location of the supervisories by using the procedures described above.
- 2. Unlock and open the door.
- 3. Press **SUPV ACK** to acknowledge **all** supervisories. The System displays the following message:

ALL SUPERVISORIES ACKNOWLEDGED.

4. If your System includes a printer, it prints the following message:

ACK SUPERVISORY 11:59:59 DEC 31,20XX ALL SUPERVISORIES ACKNOWLEDGED

5. If you press **SUPV ACK** again, the System displays ALL SUPERVISORIES ACKNOWLEDGED.

The **SUPERVISORY** LED glows steadily to indicate that all supervisories are acknowledged. If there are no troubles or security conditions in the System, the internal audible goes silent; if any of those conditions still exist, the internal audible pulses.

How to Individually Acknowledge a Supervisory (NFPA 72 Proprietary, UL 1076)

1. Press **SUPV ACK.** The System acknowledges the supervisory displayed and then displays the next unacknowledged supervisory.

If your system has a printer, it prints an acknowledgment message similar to the following:

ACK SUPERV 1-5 12:01:28 DEC 3,20XX #2 [custom message], [device type]

Note that the acknowledgment message includes the term ACK to indicate this supervisory was acknowledged.

2. Continue acknowledging supervisories as explained above until the System displays the following message: ALL SUPERVISORIES ACKNOWLEDGED.

The **SUPERVISORY** LED glows steadily to indicate that all supervisories are acknowledged. If there are no troubles or security conditions still in the System, the internal audible goes silent; if any of those conditions still exist, the internal audible pulses.

3. If your System includes a printer, it prints the following message:

ACK SUPERVISORY 12:05:44 DEC 3,20XX ALL SUPERVISORIES ACKNOWLEDGED

Security

How The System Annunciates Security Conditions

When a security condition is detected, the System causes the **SECURITY** LED on the MKB-4 to flash, the System's internal audible to sound, and the alphanumeric display on the MKB-4 to alternate in a sequence among the three messages shown below. This example assumes that two security conditions were received (See the explanations below the messages).

Message 1:

l-OOl *[custom message]* OO2 *[device type]* IN SEC Message 2:

l-OOl [custom message] OO2 [time/date] IN SEC

Message 3:

ALARMS=000	SUPERVISORIES=000
SECURITIES=000	TROUBLES=002

In addition, the System responds to security conditions with programmed output functions.

In the messages above, **1-001** represents the address of the device reporting the security condition.

002 in the first message tells you that this is the second (and the most recent) of two security conditions received.

The status information in the third message reports the total number of alarms, supervisories, troubles, and security conditions.

If your System includes a printer, it prints a message from two to four lines long similar to the following:

SECURITY IN 1-1 11:59:59 DEC 31, 20XX #1 [custom message], [device type]

In the preceding printed message, **SECU-RITY** indicates that the type of occurrence is a security condition; **1-1** is the device address; **#1** is the number of the security condition in the list of security conditions; *[custom message]* is a custom message entered using the CSG-M Custom Software Generator (See the *CSG-M Programming Manual*, P/N 315-090381); *[device type]* is the type of device which reported the security condition.

Viewing the List of Security Conditions

To see the security condition list when there is more than one security condition, press **NEXT** on the MKB-4 (the System displays the most recent security condition first).

How to Individually Acknowledge a Security Condition (UL 1076)

1. Press **SEC ACK**. The System acknowledges the security condition displayed and then displays the next unacknowledged security condition.

If your System has a printer, it prints an acknowledgment message similar to the following:

ACK SECURITY 1-5 12:01:28 DEC 3,20XX #2 [custom message], [device type]

Note that the acknowledgment message includes the term ACK to indicate this security condition was acknowledged.

 Continue acknowledging security conditions as explained above until the System displays the following message: ALL SECURITY CONDITIONS ACKNOWLEDGED.

The SECURITY LED glows steadily to indicate that all security conditions are acknowledged, and the internal audible goes silent.

3. If your System includes a printer, it prints the following message:

ACK SECURITY 12:05:44 DEC 31, 20XX ALL SECURITY CONDITIONS ACKNOWLEDGED

Troubles

How The System Annunciates Troubles

When a trouble is detected, the System causes the **TROUBLE** LED on the MKB-4 to flash, the System's internal audible to sound, and the alphanumeric display on the MKB-4 to alternate in a sequence among the three messages shown below. This example assumes that two troubles were received (See the explanations below).

Message 1:

l-OOL Ccustom message] OO2 Ctrouble type] IN TBL

Message 2:

```
1-001 Edevice type]
002 Etime/date] IN TBL
```

Message 3:

ALARMS=000	SUPERVISORIES=000
SECURITIES=002	TROUBLES=000

In addition, the System responds to troubles with programmed output functions.

In the messages above, **1-001** represents the address of the device reporting the trouble.

002 in the first message tells you that this is the second (and the most recent) of two troubles received.

The status information in the third message reports the total of alarms, supervisories, troubles, and security conditions.

If your System includes a printer, it prints a message from two to four lines long similar to the following:

TROUBLE IN 1-1 11:59:59 DEC 31, 20XX
#1 [custom message] [trouble type], [device type]

In the above printed message, **TROUBLE** indicates that the type of occurrence is a trouble; **1-1** is the device address; and **#1** is the number of troubles in the list of troubles; *[custom message]* is a custom message entered using the CSG-M Custom Software Generator (See the *CSG-M Programming Manual*, P/N 315- 090381); *[trouble type]* is the type of trouble which reported; *[device type]* is the type of device in trouble.

Viewing The List of Troubles

To see the trouble list when there is more than one trouble, press **NEXT** on the MKB-4 (the System displays the most recent trouble first).

How to Block Acknowledge a Trouble (NFPA 72 Local, Municipal Tie, and Remote Station)

- Note the specific location of the trouble(s) by using the procedures described above.
- 2. Unlock and open the door.
- 3. Press **TRBL ACK** to acknowledge **all** troubles. The System displays the following message: ALL TROUBLES ACKNOWLEDGED.
- 4. If your System includes a printer, it prints the following message:

ACK TROUBLE 11:59:59 DEC 31, 20XX ALL TROUBLES ACKNOWLEDGED

5. If you press **TRBL ACK** again, the System displays

ALL TROUBLES ACKNOWLEDGED.

The **TROUBLE** LED glows steadily to indicate that all troubles are acknowledged. If there are no security conditions in the System, the internal audible goes silent; if any security conditions still exist, the internal audible pulses.

How to Individually Acknowledge a Trouble (NFPA 72 Proprietary, UL 1076)

1. Press **TRBL ACK**. The System acknowledges the trouble displayed and then displays the next unacknowledged trouble.

If your System has a printer, it prints an acknowledgment message similar to the following:

ACK TROUBLE 1-5 12:01:28 DEC 31,20XX #2 [custom message], [trouble type], [device type]

Note that the acknowledgment message includes the term ACK to indicate this trouble was acknowledged.

2. Continue acknowledging troubles as explained above until the System displays the following message:

ALL TROUBLES ACKNOWLEDGED.

The **TROUBLE** LED glows steadily to indicate that all troubles are acknowledged. If there are no security conditions still in the System, the internal audible goes silent; if any of those conditions still exist, the internal audible pulses.

3. If your System includes a printer, it prints the following message:

ACK TROUBLE 12:05:44 DEC 31, 20XX ALL TROUBLES ACKNOWLEDGED

Reset Procedures

Hard Reset

Other terms for *Hard Reset* are *Power-up*, *Initialization*, and *Cold Reset*.

Applying power to the System performs a Hard Reset which initializes (starts) the entire system.

What Is Lost:

- Alarms, supervisories, security conditions and troubles
- Any user entries such as time and date
- Arm/disarm
- Manual sensitivity adjustment
- Time-based control until time is reset

What Is <u>Not</u> Lost:

CSG-M program

Soft Reset

To perform a Soft Reset, press **RESET** on the MKB-4 (Refer to Figure 32, page 3-4). Soft reset does not work until you acknowledge all alarms, supervisories, security conditions and troubles and silence the System.

What Is Lost:

- Alarms, supervisories, security conditions, troubles
- Arm/disarm (unless option disabled by CSG-M)

What Is <u>Not</u> Lost:

- Any user entries such as time and date.
- Arm/disarm (when enabled by CSG-M)
- CSG-M program
- Manual sensitivity adjustment
- Time-based control

If you press **RESET** before acknowledging all conditions and silencing the audible alarms, the display shows a message similar to the following:

ALARMS NOT ALL ACKNOWLEDGED YET
(or)
SUPERVISORY NOT ALL ACKNOWLEDGED YET
(or)
SECURITY NOT ALL ACKNOWLEDGED YET
(or)
TROUBLES NOT ALL ACKNOWLEDGED YET
(or)
AUDIBLES NOT ALL SILENCED YET

If your System has a printer, it prints a message similar to the following and adds SYSTEM NOT RESET on the bottom line:

RESET 0:1 1:58 Jul 03,20XX Not All Acknowledged Yet. System Not Reset.

When the System performs a Soft Reset, the display shows the following message:

SYSTEM RESET

The System then returns to Normal mode and the display shows the following:

11:59:59	DEC	31,	20XX	5	MATZYZ
Ecustom	Syste	m me	essage	ו ב	NORMAL

If your System has a printer, it prints the following message:

SYSTEM RESET

If the System is already in Normal mode when you press **RESET**, it displays

SYSTEM ALREADY NORMAL

and does not reset.

Using The MKB Keyboard/Annunciator Panel in Global Mode

The Global MKB Keyboard/Annunciator Panel operates the same as described in Using The MKB Keyboard/Annunciator Panel Local Mode, except as noted below.

Limitations/Restrictions

- As in all networked MXL Systems, the self-restoring trouble option is not allowed in any MXL.
- An MXL still may only contain a maximum of 4 supervised MKBs. This can be a mix of local and global MKBs.
- BLOCK ACK must be enabled in the CSG-M.
- The maximum number of supervised Global MKBs is 10.
- The maximum number of Global Printers is 2 (not TSP-40s).

Global MKB Display Format

In order to insert the XNET node information and provide an indication of the number of events in the System, some of the characters in the first and second lines have been lost.

NN = NODE # (1 - 64) MMM = MODULE # (1 - 253) DDD = DEVICE # (1 - 254)

ALARM

The 3 event displays are formatted as follows for an alarm condition:

NN:MMM-DDD Ecustom l Etime/datel		ACK ALR
NN:MMM-DDD Ecustom L Edevice typel	message] IN	ACK ALR
ALARMS=l Security=d	SUPERVISOR TROUBLE	·· –

SUPERVISORY

The 3 event displays are formatted as follows for a supervisory condition:

NN:MMM-DDD Ecustom 1 Etime/date1	messagel	ACK IN SUP
NN:MMM-DDD Ecustom 1 Edevice type]	messagel	ACK IN SUP
ALARMS=0 SECURITY=0		ISORY=l UBLES=D

SECURITY

The 3 event displays are formatted as follows for a security condition:

NN:MMM-DDD Ecustor	n messagel ACK
2 Etime/datel	IN SEC
NN:MMM-DDD Ecustor	n messagel ACK
2 Edevice typel	IN SEC
ALARMS=0	SUPERVISORY=D
Security=2	TROUBLES=D

TROUBLE

The 3 event displays are formatted as follows for a trouble condition:

NN:MMM-DDD Ecustom 23 Etrouble typel		ACK TRB
NN:MMM-DDD Ecustom 23 Etime/datel		ACK TRB
ALARMS=D SECURITY=D	SUPERVISOF TROUBLES	·· –

Leading zeros are not included in addresses and counts.

Additional data causes a three character shift right, resulting in the loss of three characters from the displayed message.

Additional data also causes a two character shift to the right, resulting in the loss of two characters of the device or trouble type.

The System queue totals are over 10,000 events. This expands the event number fields to 5 digits from 3. The order of these events is as follows:

- Queue priority (Alarm, Supervisory, Security, Trouble).
- Time and date of event (newest first).
- If the two previous items are identical, the lower node number takes priority.

Global Keypad Operation

BLOCK ACK

Global block acknowledgment operates as in a standalone MXL, but with global scope. Events for the queue acknowledge System wide (all nodes).

Pressing a global **BLOCK ACK** key results in a broadcast XNET message to all nodes to acknowledge all events in that queue. Panels process the event just as if the key press had occurred at one of its MKBs. A success code (or error code) is sent to the NODE that initiated the global acknowledge.

An acknowledgment message is displayed and printed (and the appropriate LED is updated) when the MXL determines all events at that level have been acknowledged (System wide). The time/date stamp of an event is used to determine the true state of the System.

LEDs are not updated unless all nodes confirm the acknowledgment has been successfully executed.

AUD SILENCE

This key is NOT a toggle as in a local mode. If silenceable audibles are active anywhere in the System, the LED flashes.

When the global **AUD SILENCE** key is pressed with any/all audibles in the System unsilenced, a global silence command is issued. The command is processed in the nodes as if a local audible silence had been requested.

Command preprocessing is in place to prevent silenceable audibles from getting out of sync (some systems on, some systems off) on a System basis. No audibles will be silenced unless all can be silenced. However, in cases where local control is enabled, this may be unavoidable. An error code (or success via a silence event message) allows the global MKB to keep up to date as to true System status. If any panel reports an error, the display status remains unchanged.

When the global **AUD SILENCE** key is pressed with all audibles in the System silenced, a global unsilence command is issued. The command is processed in the nodes as if a local audible unsilence had

been requested. An error code (or success via a silence event message) allows the global MKB to keep up to date as to true System status. If any panel reports an error, the display status changes since some audibles have been unsilenced.

RESET

When the global reset key is pressed, each node is tested. If all nodes meet the conditions required for reset, the reset command is sent and executed. Otherwise, the corresponding error message is displayed.

NEXT

This key operates the same as in the local mode. However, it moves the user through the System events globally in the priority order established earlier.

HOLD

This key operates the same as in the local mode.

Function Keys

These keys operates the same as in the local MKB.

Numeric Keypad

These keys operates the same as in the local MKB.

Using The Menu

The menu gives you wide control of the MXL-IQ System. You may use the menu no matter what mode the System is in.

The discussion in this section is in the following order:

- Operation of the keys on the MKB-4 Keyboard/Annunciator
- Overview of the menu's structure
- Beginning a menu session
- Introduction to each of the four menus:
- Acknowledge menu
- List menu
- Control menu
- Test menu
- Entering your password
- Entering module and device numbers
- Using the Acknowledge menu
- Using the List menu
- Using the Control menu
- Using the Test menu

Operation of the Keys on the MXL-IQ Annunciator Panel

Use the numeric keypad and the directional and command keypad when working with the menu.

Numeric Keypad

Use the numeric keypad (keys 0 through 9) when the System asks for a module number, device number, password, time, date, or other information. The display shows each number as you press the key. However, when you enter a password, the System shows asterisks in place of the digits entered.

The Command Keypad

The Command Keypad has both directional and command keys that are used to move through the menu and perform specific functions. Refer to Table 18 for a description of the Command Keypad.

Overview of the Menu's Structure

Key

ENTER

HELP

PRINT

FORM FEED CLEAR

Press **ENTER** to enter the menu. The menu then uses the first 32 spaces of the second line of the display to communicate with you. When you use the *Acknowledge* or *List* menu, the menu uses both lines of the display.

If you are in the menu and do not depress a numeric or arrow key at any time during a 1 minute period, the System returns to the previous item.

The five Main Menu items and their subitems for Revision 6.0 and higher follow; the shortened terms used in the menu itself are in parentheses:

	Acknowledge	List ¹	Control	Test
	Alarm	Status	Reset	Settime
	Supervisory (Supervsry)	Alarm	Sensitivity (Senstvty)	Ground fault (Gnd_flt)
	Security	Supervisory (Supervsry)	- Hi_3	- Main
	Trouble	Security	- Hi_2	Power ²
		Trouble	- Hi_1	- Main
		Sensitivity (Senstvty)	- Norm	- Voltage
		Voltages	- Low_1	- Current
		- Analog	- Low_2	Lamp test
		- Threshold	- Low_3	- LEDs
		- Sensitivity	Arm/disarm (Arm/dis)	- Display
		Temp	- Arm	Device LED
		Module type (Mod type)	- Disarm	MOI_Lamp_Test
		Device type (Dev type)	Output on/off	X-Network
		Message	- Arm	M-Network
		Software version	- Disarm	Override
		(SW version)	- Energize	Det_cleaned
		Output States	- De-Energize	Event_log
		Device Usages	Loop Arm	- Alrm_only
		Node Address	Loop Disarm	- Superv_only
		Air Sampling	, Netlink Request	- Security_only
		- Smoke-lev	Air Sampling	- Trbl_only
	TABLE 18	- Flow-lev	- Alarm_Trip	- All_events
	COMMAND KEYPAD	- Trip-pts	- Flow_Trip	- Hist_Ctrl
,	Purpose	Percent/ft	Percent/Ft	- Hist_Erase
_	-	- Senstvty	- Sensitivity	Pyro_diags
1	Select the item to the left of what is flashing	- Pre-alarm	(Senstvty)	Pre_alarm
	on the display (unless entering a number).	- Analog	- Pre_alarm	ASD_Devices
	Select the item to the right of what is	ASD apps	 Change_Apps	Summarize
	flashing on the display (unless entering a		0 - 11	Manual_Activate
	number).	¹ You can generate a		-
	Go back to the previous item.	printed report or listing for every item in the List		0 V
		menu except Node		² You can generate a printed report for this
_		Address; see the discussion under LIST		item; see the discussion
ſ	Press to select the item on which the cursor	Menu.		under TEST Menu.
	is flashing. After typing in numbers, press			
	ENTER to complete the entry.			
כ	Press to display a one-line message.			Walktest
Г	Press to begin printing various lists and			System_wAUD
	reports.			Loop_wAUD
/	Press to advance the paper in the printer.			Zone_wAUD
וי				System_SIL
,				Loop_SIL
R	Press to cancel printouts begun by pressing			Zone_SIL
	PRINT. The System will print:			Cancel
	This listing prematurely terminated.			Extend
_				

3-15

isplay shows the fo				
CKNOWLEDGE LI	TZI	CONTRO	L	TEST
he A in Acknowled Cknowledge by pre is blinking.				
lse the Left and Rig round in this four-i			s to i	move
o end a menu sest lain Menu or to lea me, press the Up a vard one menu eac	ive th arrow	e menu a key to go	at ar	iy
ntroduction to the	e Acl	cnowled	ge l	Menu
he Main Menu, dis NTER to begin a r our main items in tl	playe nenu	ed when y session,	/ou	press
CKNOWLEDGE LI	TZI	CONTRO	L	TEST
dge function does, in ACKNOWLEDG ystem displays:	GE is		The	
V ACKNOWLEDGE	TIND	IVIDUAL	1	
se this menu func			lode	ge
larms, supervisorie ecurity conditions i	es, tro	oubles, ai		
larms, supervisorie	es, tro ndivio	bubles, ai dually.	nd	ress
larms, supervisorie ecurity conditions i o return to the Mai I ELP again:	es, tro ndivio	bubles, ai dually.	nd y, p	ress TEST
larms, supervisorie ecurity conditions i o return to the Mai I ELP again:	es, tro ndivio n Me I S T	oubles, an dually. nu displa CONTRO edge me	y, p	TEST
larms, supervisorie ecurity conditions i o return to the Mai I ELP again: CKNOWLEDGE LI	es, tro ndivio n Me IST nowl page	oubles, an dually. nu displa CONTRO edge men 3-18.	y, p	TEST

ACKNOWLEDGE <u>L</u>IST CONTROL TEST

For help in understanding what the List function does, press **HELP** when the *L* in *LIST* is blinking. The System displays:

O LIST SYSTEM, DEVICE, CSGM INFO

Use this function to list information on the System and its devices.

To return to the Main Menu display, press **HELP** again:

We discuss the List menu in detail beginning on page 3-22.

ntroduction to the Control Menu

To move to *CONTROL* on the Main Menu, press the Right arrow key twice from *ACKNOWLEDGE*; the *C* in *CONTROL* begins blinking:

ACKNOWLEDGE	LIST	<u>c</u> ontrol	TEST
-------------	------	-----------------	------

For help in understanding what the Control function does, press **HELP** while the *C* in *CONTROL* is blinking. The System displays:

TO MODIFY DATA FOR OPERATION

Use the Control function to reset the System and to change the settings of various devices.

To return to the Main Menu display, press **HELP** again:

ACKNOWLEDGE LIST <u>C</u>ONTROL TEST

We discuss the Control menu in detail beginning on page 3-36.

Introduction to the Test Menu

To move to *TEST*, press the Right arrow key three times from *ACKNOWLEDGE*; the *T* in *TEST* begins blinking:

ACKNOWLEDGE LIST CONTROL <u>T</u>EST

For help in understanding what the Test function does, press **HELP** while the *T* in *TEST* is blinking. The System displays:

TO TEST SYSTEM, LOOP & DEVICE

Use this function to test the System, its loops, and its devices, including ground fault, battery voltage and current, and the LEDs.

To return to the Main Menu display, press **HELP** again:

ACKNOWLEDGE	LIST	CONTROL	<u>test</u>
-------------	------	---------	-------------

We discuss the Test menu in detail beginning on page 3-42.

Entering Your Password

If you select *CONTROL, TEST*, or WALK-TEST, the System asks for your password:

ENTER YOUR PASSWORD:

If you press **HELP**, the System explains this function; press **HELP** again to return to the previous display.

Type your (1-5 digit) password, using the numeric keypad. The System shows an asterisk for each digit that you type. (Use the Left arrow key to erase an error.)

When you have typed the entire password, press **ENTER**. If your password does not match a password stored in the System, the System briefly displays the following message and then returns you to the first password display:

ACCESS DENIED

If your password level is not high enough to use the Test functions, the System briefly displays the following message and then returns you to the first password display:

PASSWORD LEVEL NOT HIGH ENOUGH

Rev 5.0 and Above		
Highest	Test	
Z	Control	
Lowest	Walktest	
Below Rev 5.0		
Highest	Walktest	
Y	Test	
Lowest Control		

The System gives you three chances to enter an acceptable password before it returns you to the Main Menu.

If the System accepts your password, it displays the Control, Test, or Walktest menu. We discuss those menus later in this section.

Entering a Module Number and Device Number

The System asks you to supply a module number or device number, or both, during certain functions described in the pages that follow. Below is a summary of the procedures involved.

NOTE: The terms *module number* and *module address* are used interchangeably in this manual.

Entering a Module Number

The System displays

TYPE IN MODULE NUMBER:

If you press **HELP** at this point, the System displays the following explanation:

3 D	IGIT	MODULE	N0	PRESS	<enter></enter>
-----	------	--------	----	-------	-----------------

Press **HELP** again to return to the previous display. Type all three digits, including leading zeros, and press **ENTER**.

When you type the module number, use the Left arrow key as a backspace key to erase errors.

Entering a Device Number with the Module Number

The System displays

TYPE IN THE DEVICE NUMBER:

(If you press **HELP** at this point, the System displays the following explanation:

3 DIGIT MODULE 3 DIGIT DEVICE

Press **HELP** again to return to the previous display. Type all of the digits, including leading zeros, and press **ENTER**.)

When you type the module number and the device number, use the Left arrow key as a backspace key to erase errors.

ACKNOWLEDGE Menu

The Acknowledge menu has four items from which to choose; the shortened terms used in the menu itself are in parentheses:

ALARM SUPERVISORY (SUPERVSRY) SECURITY TROUBLE

Use this menu to individually acknowledge fire alarms, supervisories, troubles, and security conditions.

Entering the Acknowledge Menu

Select ACKNOWLEDGE from the Main Menu by pressing ENTER while the A in ACKNOWLEDGE is blinking. The System displays the first Acknowledge menu (the A in ALARM is blinking):

ACKNOWLEDGE: <u>A</u>LARM SUPERVISRY

NOTE: To end a menu session and return to the Main Menu or to leave the menu at any time, press the Up arrow key to go backward one menu each time.

Acknowledge: Alarm

Use this function to individually acknowledge fire alarms.

Press **ENTER** when the *A* in *ALARM* is blinking to select *ACKNOWLEDGE ALARM*:

ACKNOWLEDGE: ALARM SUPERVISRY

If There Is No Alarm:

If there is no current alarm, the System briefly displays the following message and then returns you to the Acknowledge menu:

NO ALARM EXISTS

(If your System has a printer, it prints the above message as well.)

If All Alarms Are Acknowledged:

If all the alarms are acknowledged, the System displays the following message and then returns you to the Acknowledge menu.

ALL ALARMS ACKNOWLEDGED

(If your System has a printer, it prints the above message as well.)

If There Is an Unacknowledged Alarm:

If there is at least one unacknowledged alarm, the menu shows the most recent unacknowledged alarm on both lines of the display, as in the following display:

29-041 [custom message] 007 [device type] IN ALR

In the above display, **29** is the module number, **041** is the device number, the message on the first line is the custom message for the device at that location, **007** indicates that this is the seventh alarm, *[device type]* indicates the type of device in alarm, and **IN ALR** indicates that this is a fire alarm.

(Press **HELP** if you want information on what to do. The System displays:

PRESS ENTER TO ACK. PRESS NEXT TO SKIP.

Press **HELP** again to return to the previous display.)

Press **ENTER** to acknowledge the alarm shown.

The System prints a message similar to the following and removes that alarm from the unacknowledged alarm list:

ACK ALARM 29-041 16:11:41 Aug 28,20XX #7 [custom message], [device type]

In the above message, the time and date are the time and date that the alarm was acknowledged and **29-041** is the address.

The System then displays the next alarm to acknowledge.

To skip an alarm shown, press **NEXT**. The System displays the next alarm in the series. When the System has displayed all

of the unacknowledged alarms, it returns to the first Acknowledge menu:

ACKNOWLEDGE: <u>A</u>LARM SUPERVISRY

(To end a menu session and return to the Main Menu or to leave the menu at any time, press the Up arrow key to go backward one menu each time.)

Acknowledge: Supervsry

Use this function to individually acknowledge supervisories.

Select ACKNOWLEDGE from the Main Menu by pressing **ENTER** while the A in ACKNOWLEDGE is blinking. The System displays:

ACKNOWLEDGE: ALARM SUPERVISRY

Press the Right arrow key once to cause the S in SUPERVISRY to blink.

(If you press **HELP** at this time, the System explains the *Acknowledge Supervisory* function:

TO ACK SUPERVISORY INDIVIDUALLY

Press **HELP** again to return to the AC-KNOWLEDGE: ALARM SUPERVISRY display.)

Press **ENTER** while the *S* is blinking to select *SUPERVISRY*.

If There Is No Supervisory:

If there is no supervisory to acknowledge, the System briefly displays the following message and then returns you to the Acknowledge menu:

NO SUPERVISORY EXISTS

(If your System has a printer, it prints the above message as well.)

If All Supervisories Are Acknowledged:

If all supervisories are acknowledged, the System briefly displays the following message and then returns you to the Acknowledge menu:

ALL SUPERVISORIES ACKNOWLEDGED

If There Is An Unacknowledged Supervisory:

The System does not let you acknowledge supervisory conditions if there are any unacknowledged alarms. If there is at least one unacknowledged alarm, the System briefly displays the following message and then returns you to the Acknowledge menu:

ALARM NOT ALL ACKNOWLEDGED YET

Select ALARM and follow the instructions in ACKNOWLEDGE ALARM above.

(If your System has a printer, it prints the above message as well.)

After you acknowledge all alarms, the System allows you to acknowledge supervisories. If there is at least one unacknowledged supervisory, the menu shows the most recent unacknowledged supervisory on both lines of the display, as in the following display:

32-045 [custom message] 012 [device type] IN SUP

In the preceding display, **32** is the module number, **045** is the device number, the message on the first line is the custom message for the device at that location, **012** indicates that this is the twelfth supervisory, *[device type]* indicates the type of device causing the supervisory, and **IN SUP** identifies the item as an off-normal supervisory.

(Press **HELP** if you want information on what to do. The System displays:

PRESS ENTER TO ACK. PRESS NEXT TO SKIP

Press **HELP** again to return to the previous display.)

Press **ENTER** to acknowledge the supervisory shown. The System prints a message similar to the following and removes that supervisory from the unacknowledged supervisory list:

ACK SUPERV 32-045 16:11:44 Aug 2.20XX #12 [custom message]. [device type]

In the above message, the time and date are the time and date the supervisory was acknowledged and **32-045** is the address.

The System then displays the next supervisory to acknowledge.

To skip a supervisory, press **NEXT**. The System displays the next supervisory in the series. When the System has displayed all of the unacknowledged supervisories, the System returns to the acknowledge menu on the second line of the display.

(To end a menu session and return to the Main Menu or to leave the menu at any time, press the Up arrow key to go backward one menu each time.)

Acknowledge: Security

Use this function to individually acknowledge security conditions.

Select ACKNOWLEDGE from the Main Menu by pressing **ENTER** while the A in ACKNOWLEDGE is blinking. The System displays the first Acknowledge menu:

ACKNOWLEDGE: ALARM SUPERVISRY

Press the Right arrow key three times. The System displays the second *Acknowledge* menu, with the *S* in *SECURITY* blinking:

ACKNOWLEDGE: TROUBLE <u>S</u>ECURITY

(If you press **HELP** at this time, the System explains the Acknowledge Security function:

TO ACK SECURITY INDIVIDUALLY

Press **HELP** again to return to the Acknowledge menu.)

Press **ENTER** while the *S* is blinking to select *Security*.

If There Is No Security Condition to Acknowledge: If there is no Security condition to acknowledge, the System briefly displays the following message and then returns you to the Acknowledge menu:

NO SECURITY EXISTS

(If your System has a printer, it prints the above message as well.)

If All Security Conditions Are Acknowledged: If all security conditions are acknowledged, the System displays the following message and returns you to the Acknowledge menu:

ALL SECURITIES ARE ACKNOWLEDGED

(If your System has a printer, it prints the above message as well.)

If There Is An Unacknowledged Security Condition:

The System does not let you acknowledge security conditions if there are any unacknowledged alarms, supervisories, or troubles.

If there is at least one unacknowledged alarm, the System briefly displays the following message and then returns you to the Acknowledge menu:

ALARMS NOT ALL ACKNOWLEDGED YET

(If your System has a printer, it prints the above message as well.)

Follow the instructions above to acknowledge any unacknowledged alarms, supervisories, and troubles.

After you acknowledge all fire alarms, supervisories, and troubles, the System allows you to acknowledge security conditions. If there is at least one unacknowledged security condition, the System displays the most recent unacknowledged security condition:

42-058 *[custom message]* 005 *[device type]* IN SEC

In the above display, **42** is the module number, **058** is the device number, the message on the first line is the custom message for the device at that location, **005** indicates that this is the fifth security condition, *[device type]* indicates the type of device causing the security condition, and **IN SEC** identifies this as an off-normal security condition.

(Press **HELP** if you want information on what to do. The System displays:

PRESS ENTER TO ACK. PRESS NEXT TO SKIP.

Press **HELP** again to return to the previous display.)

Press **ENTER** to acknowledge the security condition shown. The System prints a message similar to the following message and removes that security condition from the unacknowledged security list:

ACK SECURITY 42-058 16:11:44 Aug 8:20XX #5 [custom message]; [device type]

In the above message, the time and date given are the time and date when the security condition was acknowledged, and **42-058** is the address.

The System then displays the next security report to acknowledge.

To skip a security condition, press **NEXT**. The System displays the next security condition in the series. When the System has displayed all of the unacknowledged security conditions, it returns to the Acknowledge menu.

(To end a menu session and return to the Main Menu or to leave the menu at any time, press the Up arrow key to go backward one menu each time.)

Acknowledge: Trouble

Use this function to individually acknowledge troubles.

Select *ACKNOWLEDGE* from the Main Menu by pressing **ENTER** while the *A* in *ACKNOWLEDGE* is blinking. The System displays the first Acknowledge menu:

ACKNOWLEDGE: <u>A</u>LARM SUPERVISRY

Press the Right arrow key **twice**. The System displays the *Acknowledge* menu with *T* in *TROUBLE* blinking:

ACKNOWLEDGE: SUPERVISRY <u>T</u>ROUBLE

(If you press **HELP** at this time, the System explains the *Acknowledge Trouble* function:

TO ACK TROUBLE INDIVIDUALLY

Press **HELP** again to return to the acknowledge menu.)

Press **ENTER** while the *T* is blinking to select *Trouble*.

If There Is No Trouble:

If there is no trouble to acknowledge, the System briefly displays the following message and returns you to the acknowledge menu:

NO TROUBLE EXISTS

(If your System has a printer, it prints the above message as well.)

If All Troubles Are Acknowledged:

If all the troubles are acknowledged, the System displays the following message and returns you to the Acknowledge menu:

ALL TROUBLES ACKNOWLEDGED

(If your System has a printer, it prints the above message as well.)

If There Is An Unacknowledged Trouble:

The System does not let you acknowledge troubles if there are any unacknowledged fire alarms or supervisories. Follow the instructions above to acknowledge them.

After you acknowledge all fire alarms and supervisories, the System allows you to acknowledge troubles. If there is at least one unacknowledged trouble, the System shows the most recent unacknowledged trouble on both lines of the display, as in the following display:

36-0)50 Ecusto	om messa	gel	
018	[trouble	type〗	ΙN	TBL

In the above display, **36** is the module number, **050** is the device number, the message on the first line is the custom message for that device, **018** indicates that this is the eighteenth trouble, *[trouble type]* indicates the type of trouble, and **IN TBL** identifies the event as the occurrence of a trouble.

(Press **HELP** if you want information on what to do. The System displays:

PRESS ENTER TO ACK. PRESS NEXT TO SKIP.

Press **HELP** again to return to the previous display.)

Press **ENTER** to acknowledge the trouble shown. The System prints a message similar to the following message and removes that trouble from the unacknowledged trouble list:

ACK TROUBLE 36-050 16:11:44 Aug 8, 20XX #18 [custom message], [trouble type] [device type]

In the above message, the time and date are the time and date that the condition was acknowledged and **36-050** is the address.

The System then displays the next trouble to acknowledge.

When the System has displayed all of the unacknowledged troubles, it returns to the Acknowledge menu.

(To end a menu session and return to the Main Menu or to leave the menu at any time, press the Up arrow key to go backward one menu each time.)

LIST Menu

The List menu has eighteen items from which to choose; the shortened terms used in the menu are in parentheses.

You can generate a printed list or report for every item on the List menu except Node Address. See the discussion for each item that follows.

- Status
- Alarm
- Supervisory (Supervsry)
- Security
- Trouble
- Sensitivity (Senstvty)
- Voltages
- Temp
- Module type (Mod type)
- Device type (Dev type)
- Message

- Software version (SW version) Output states Device usages Node address Air Sampling Percent/ft
- ASD_apps

Use the List menu to learn the following information:

- Status of the System
- Alarm information
- Supervisory information
- Security information
- Trouble information
- Detector sensitivity
- Detector voltage Analog Threshold (Thresh) Sensitivity (Sens)
- Temperature of FP-11 or FPT-11
- Type of module
- Type of device
- Custom message of the given address
- · Version of the System software
- Output states
- Device usages
- Panel's X-Network node address
- Percent per foot obscuration Sensitivity Pre-alarm Analog
- Device application (ASD setting)

Entering the List Menu

From the Main Menu, use the Left or Right arrow key to cause the *L* in *List* to blink.

If you press **HELP** at this point, the System explains the List function:

TO LIST SYSTEM, DEVICE, CSGM INFO

Press **HELP** again to return to the Main Menu.

Press **ENTER** to select *LIST*. The System displays the first List menu, with the *S* in *STATUS* blinking:

LIST: <u>S</u>TATUS ALARM SUPERVSRY

(To end a menu session and return to the Main Menu or to leave the menu at any time, press the Up arrow key to go backward one menu each time.)

List: Status

The *List Status* function shows you the number of acknowledged and unacknowledged alarms, supervisories, security conditions, and troubles, in that order.

From the List menu, use the Right or Left arrow keys to cause the *S* in *STATUS* to blink.

(If you press **HELP** at this point, the System explains the *List Status* function:

SHOW NUMBER OF ACKED & UNACKED

Press **HELP** again to return to the List menu.)

When you press **ENTER** to select *List Status,* the display first shows the total number of alarms and the number of acknowledged alarms:

2 ALARM 2 ALARM ACK

To view, in order, the status of supervisories, troubles, and security conditions, press **NEXT**.

After the Security display, the System returns to the List menu.

To make a printed list of current status, press **PRINT** when the *S* in *STATUS* is blinking. The System will print a listing similar to the following:

System Status at 11:02:26 Jul 01, 20XX: 2 ALARM 2 ALARM ACK 0 SUPERV 0 SUPERV ACK 0 SECURITY 0 SECURITY ACK 30 TROUBLE 30 TROUBLE ACK In the above printed message, there are two alarms, both of them acknowledged, no supervisory conditions, no security conditions and 30 trouble conditions, all acknowledged.

(To end a menu session and return to the Main Menu or to leave the menu at any time, press the Up arrow key to go backward one menu each time.)

List: Alarm

The *List Alarm* function shows you all the fire alarms currently in the System in the order they occurred.

From the List menu, use the Left or Right arrow key to cause the *A* in *ALARM* to begin blinking.

If you press **HELP** at this point, the System explains the *List Alarm* function:

SHOW INDIVIDUAL ALARM STATUS

Press **HELP** again to return to the List menu.

Press **ENTER** to select *ALARM* and display alarm information on the MKB-4 display.

If There Is No Fire Alarm:

If there is no fire alarm, the System briefly displays the following message and then returns you to the List menu:

NO ALARM EXISTS

If There Is a Fire Alarm:

If there is at least one fire alarm, the System shows the most recent alarm, alternating between the following two displays:

1-001 Ecusto	om messa	ge』	
002 Edevice	type』	IN	ALR

l-OOl [custom message]	
002 [time/date]	IN ALR

Press **NEXT** to show the two displays for the previous alarm in the sequence. (Pressing **HOLD** freezes a display for as long as you keep **HOLD** depressed.)

When the System has shown all current fire alarms, it returns to the List menu.

To obtain a full printed list of alarms in the following format—one item for each current alarm—press **PRINT** when the *A* in *ALARM* is blinking.

Listing of all Alarm at 14:35:20 Oct 09,20XX: ALARM 1-5 14:34:22 Oct 09,20XX #1 [custom message], [device type]

In the above listing, **1-5** is the address of the device in alarm, the time is the time the device went into alarm, **#1** is the number of this alarm in the current list, **[custom message]** is the custom message for the device in alarm, and **[device type]** is the type of device in alarm.

(To end a menu session and return to the Main Menu or to leave the menu at any time, press the Up arrow key to go backward one menu each time.)

List: Supervisory

The *List Supervisory* function shows you all the supervisories currently in the System in the order they occurred.

From the List menu, use the Left or Right arrow key to cause the *S* in *SUPERVSRY* to blink.

(If you press **HELP** at this point, the System explains the List Supervisory function:

SHOW INDIVIDUAL SUPERVISORY

Press **HELP** again to return to the List menu.)

Press **ENTER** to select *SUPERVSRY* and display supervisory information on the MKB-4 display.

If There Is No Supervisory:

If there is no supervisory, the System briefly displays the following message and then returns you to the List menu:

NO SUPERVISORY EXISTS

If There Is a Supervisory:

If there is at least one supervisory, the System shows the most recent supervisory,

alternating between the following two displays:

l-OOL Ccustom message] OO2 Cdevice type]	IN	SUP
l-OOl [custom-message] OO2 [time/date]	IN	SUP

Press **NEXT** to show the two displays for the previous supervisory in the sequence. (Pressing **HOLD** freezes a display for as long as you keep **HOLD** depressed.)

When the System has shown all current supervisories, it returns to the List menu.

To obtain a full printed list of supervisories in the following format—one item for each current supervisory—press **PRINT** when the *S* in *SUPERVISORY* is blinking.

Listing of all Supervsry at 14:35:20 Oct 09,20XX: SUPERV IN 32-45 14:34:22 Oct 09, 20XX #7 [custom message], [device type]

In the preceding listing, **32-45** is the address of the device in supervisory, **#7** is the number of the supervisory in the current list, *[custom message]* is the custom message for the device in supervisory, and *[device type]* is the type of device in supervisory.

(To end a menu session and return to the Main Menu or to leave the menu at any time, press the Up arrow key to go backward one menu each time.)

List Security Conditions

The List Security function shows you all the security conditions currently in the System in the order they occurred.

From the List menu, use the left or right arrow key to cause the *S* in *SECURITY* to blink.

(If you press **HELP** at this point, the System explains the List Security function:

SHOW INDIVIDUAL SECURITY STATUS

Press **HELP** again to return to the List menu.)

Press **ENTER** to select *SECURITY* and display security information on the MKB-4 display.

If There Is No Security Condition:

If there is no security condition, the System briefly displays the following message and then returns you to the List menu:

NO SECURITY EXISTS

If There Is a Security Condition:

If there is at least one security condition, the System shows the most recent security condition, alternating between the following two displays:

l-OOL [custom message] OO2 [device type]	IN SEC
l-OOl [custom message] OO2 [time/date]	IN SEC

Press **NEXT** to show the two displays for the previous security condition in the sequence. (Pressing **HOLD** freezes a display for as long as you keep **HOLD** depressed.)

When the System has shown all current security conditions, it returns to the List menu.

To obtain a full printed list of security conditions in the following format— one item for each current security condition press **PRINT** when the *S* in *SECURITY* is blinking.

Listing of all Security at 14:35:20 Oct 09,20XX: SECURTY IN 29-42 14:34:22 Oct 09,20XX #7 [custom message], [device type]

In the above listing **29-42** is the address of the device causing the security condition, the time when the device caused the security condition, **#7** is the number of this security condition, **[custom message]** is the custom message for the device causing the security condition, and **[device type]** is the type of device causing the security condition.

To end a menu session and return to the Main Menu or to leave the menu at any time,

press the Up arrow key to go backward one menu each time.

List: Trouble

The *List Trouble* function shows you all the troubles currently in the System in the order they occurred.

From the List menu, use the left or right arrow key three times to cause the T in *TROUBLE* to blink.

(If you press **HELP** at this point, the System explains the List Trouble function:

SHOW INDIVIDUAL TROUBLE STATUS

Press **HELP** again to return to the List menu.)

Press **ENTER** to select *TROUBLE* and display trouble information on the MKB-4 display.

If There Is No Trouble:

If there is no trouble, the System briefly displays the following message and then returns to the List menu:

If There Is a Trouble:

If there is at least one trouble, the System shows the most recent trouble, alternating between the following two displays:

l-OOl [custom message] OO2 [trouble type]	IN	TBL
l−00l	IN	TBL

Press **NEXT** to show the two displays for the previous trouble in the sequence. (Pressing **HOLD** freezes a display for as long as you keep **HOLD** depressed.)

When the System has shown all current troubles, it returns to the List menu.

To obtain a full printed list of troubles in the following format—one item for each current trouble—press **PRINT** when the *T* in *TROUBLE* is blinking.

Listing of all Trouble at 14:35:20 Oct 09, 20XX: TROUBLE IN 29-41 14:34:22 Oct 09, 20XX #7 [custom message],[trouble type], [device type]

In the above listing **29-41** is the address of the device in trouble, the time tells when the device went into trouble, **#7** is the number of this trouble in the current list, **[custom message]** is the custom message for the device in trouble, **[trouble type]** is the type of trouble, and **[device type]** is the type of device in trouble.

(To end a menu session and return to the Main Menu or to leave the menu at any time, press the Up arrow key to go backward one menu each time.)

List: Sensitivity Settings

Use List Sensitivity to show sensitivity setting of individual smoke detectors on analog loops.

From the List menu use the left or right arrow key to cause the S in SENSTVTY to start blinking:

LIST: TROUBLE SECURITY SENSTVTY

(If you press **HELP** at this point, the System displays:

SHOW DETECTOR SENSITIVITIES

Note that *List Sensitivity* shows the sensitivity of smoke detectors only. Press **HELP** again to return to the List menu.)

Display the Sensitivity Setting of One Device Press **ENTER** to select *List Sensitivity*. The System asks you for a module and device number.

TYPE IN MODULE & DEVICE: OOL-OOL

Type the three-digit module number and three-digit device number using the numeric keypad and press **ENTER**. (Enter all leading zeros.)

The System displays the sensitivity setting of the device specified (*Hi_3, Hi_2, Hi_1, Norm, Low_1, Low_2* or *Low_3*).

Press **NEXT** to display the address and sensitivity setting of each succeeding smoke detector. When the System has shown the sensitivity settings of all smoke detectors on that analog loop, it returns to the List menu.

To leave the *List Sensitivity* menu without going through the entire analog loop, press the Up arrow key. The System displays the List menu.

Print the Sensitivity Setting of All Smoke Detectors Assigned to a Specified Module Press **PRINT** when the S in SENSTVTY is blinking. The System then asks for a module number.

TYPE IN MODULE NUMBER: [module number]

Type the three-digit module number and press **ENTER**. (Enter all leading zeros.)

The System prints the sensitivity settings (*Hi_3, Hi_2, Hi_1, Norm, Low_1, Low_2* or *Low_3*, or ... if there is no smoke detector) of all the devices assigned to the analog loop.

Sensitivities for module 1 1- HI_3 2-... 3- NORM 4-... 5-... 6-... 7-... 8-... 9-... 10-... 11- NORM 12-... 13-... 14-... 15- LOW1

NOTE: You cannot print the sensitivity setting of a single smoke detector.

(To end a menu session and return to the Main Menu or to leave the menu at any time, press the Up arrow key to go backward one menu each time.)

List: Voltages

Use *List Voltages* to show the voltages of initiating devices on analog loops.

From the List menu press the Left or Right arrow key to cause the *V* in *VOLTAGES* to start blinking:

LIST: SECURITY, SENSTVTY, VOLTAGES

(If you press **HELP** at this point, the System displays:

SHOW DETECTOR VOLTAGES

Press **HELP** again to return to the List menu.)

Display the Voltage of One Device

Press **ENTER** to select *List Voltages*. The System asks you for a module number and device number. Type the three-digit module number and three-digit device number using the numeric keypad and press **ENTER**. (Enter all leading zeros.) The System shows the following menu for that device (the *A* in *ANALOG* will be blinking):

OOL-OOL <u>A</u>NALOG THRESH SENS

Press **ENTER** to show the Analog voltage for that device. When you ask for any voltage, the System displays *Please wait for response* until it receives a reading from the device; if you have just reset the System, it alternates the above message with the message *Device being initialized*. The display for Analog voltage is similar to the following (readings are dynamic):

001-001	ANAL0G2	=	2.75	VOLTS	
---------	---------	---	------	-------	--

Press ENTER to return to the previous display. To view the Threshold or Sensitivity voltage of any device listed, use the Right and Left arrow keys to highlight the first letter of the category desired and press ENTER.

The display for Threshold voltage is similar to the following:

COL-COL THRESHOLD = 4.75 VOLTS

The display for Sensitivity voltage is similar to the following (readings are dynamic):

Press the Up arrow key to return to the *List: Voltage Mod_type Dev_type* menu.

If the module number entered is not an analog loop, the System displays:

Not Analog Loop.

If the device address has no device assigned by CSG-M, the System displays:

No Device Assigned.

When displaying sensitivities, if the device is not a smoke detector, the System displays:

Not a Smoke Detector.

Print the Voltage of All Devices Assigned to a Specified Module

Press **PRINT** when the *V* in *Voltages* is blinking. The System asks you for a module number. Type the three-digit module number and press **ENTER**. (Enter all leading zeros.)

002-001 Analog Thresh Sens

Press **ENTER** to print the Analog voltage for all devices assigned to the module (ND = No Device).

ANALOG VOLTAGES FOR MODULE 1

1-2.00	2-2.00	3-ND	4- ND	5-ND
6– ND	7-ND	8-ND	9-ND	10-ND
11-ND	12-ND	13-ND	14-ND	15-ND

To print the Threshold voltages of all the devices for the specified module, use the arrow keys to cause the *T* in *THRESH* to blink and press **PRINT**. The System prints those threshold voltages in a format similar to the following (ND = No Device):

THRESHOLD VOLTAGES FOR MODULE 1 1-4.75 2-4.75 3-ND 4-ND 5-ND 6-ND 7-ND 10-ND 8-ND 9-ND

6-ND	'/ – ND	10-ND	8-ND	9-ND
11-ND	12-ND	13-ND	14-ND	15-ND

To print the Sensitivity voltages of all the smoke detectors for the specified module, use the arrow keys to cause the *S* in *SENS* to blink and press **PRINT**. The System prints those sensitivity voltages in a format similar to the following (ND = No Device, or device not a smoke detector):

SENSITIVI	TY VOLTA	GES FOR	MODULE	1
1-2.75	2-2.62	3-ND	4- ND	5-ND
6-ND	7-ND	10-ND	8- ND	9-ND
11-ND	12-ND	13-ND	14- ND	15-ND

(To end a menu session and return to the Main Menu or to leave the menu at any time, press the Up arrow key to go backward one menu each time.)

List: Temp

Use List Temp to display the current temperature on the LCD display at the location where the detector is installed.

From the List menu use the left or right arrow key to cause the *T* in *Temp* to start blinking:

LIST: TEMP

Press ENTER to select *List Temp*. The System asks you for a module and device number:

Type In Module & Device:

Type the three-digit module number and three-digit device number using the numeric keypad and press **ENTER**.

If the device is not installed or is not an FP-11 or FPT-11, the system displays following message:

Not Applicable or No Device:

If the device is an FP-11 or FPT-11, the temperature is displayed in the following format:

001-001	25	DEG	С	/	77	DEG	F

Press **NEXT** to display the temperature of the FP-11 or FPT-11 at the next higher address in the same loop.

To leave the Temp menu without going through all subaddresses, press the Up arrow key. The System displays the List menu.

List: Module Type

Use the *List Mod_type* to show the type of a particular module.

From the List menu use the Left or Right arrow key to cause the *M* in *MOD TYPE* to start blinking:

LIST: VOLTAGES MOD_TYPE SENSTVTY

(If you press **HELP** at this point, the System explains this function:

SHOW THE TYPE OF MODULE

Press **HELP** again to return to the List menu.)

Display the Module Type of One Module

Press **ENTER** when the *M* in *MOD_ TYPE* is blinking. The System asks you for a module number:

TYPE IN MODULE NUMBER:

Type the three-digit module number using the numeric keypad and press **ENTER**. (Enter the leading zeros.) The System displays the module type for the module number specified:

MOD 074 TYPE: CZM4

If you press **NEXT**, the System displays the module type for the next module number in the sequence:

MOD 075 TYPE: ALD

NOTE: If you enter a module number not assigned in CSG-M, the System displays:

NO MOD ASSIGNED

With each press of **NEXT**, the System continues to display module types through number 255, the highest module number allowed by the System. It then returns to the List menu.

Print the Module Type and Network Address of All Modules

Press **PRINT** when the *M* in *MOD_TYPE* is blinking to print a full list of module types and their Network addresses. The System prints a list similar to the following:

Listing of Module Types: 1- V7 ALD 2- V7 ALD 3- V4 CZM-4 251- V5 MKB-4 253- V1 MXL-IQ Panel

In the above display, the number following the V (for example, **V7)** is the software version number of the software installed in the module.

(To end a menu session and return to the Main Menu or to leave the menu at any time, press the Up arrow key to go backward one menu each time.)

List: Device Type

Use *List Device Type* to show the type of a particular device.

From the List menu use the Left or Right arrow key to cause the *D* in *DEV_TYPE* to start blinking:

LIST: VOLTAGES MOD_TYPE <u>D</u>EV TYPE

(If you press **HELP** at this point, the System displays:

SHOW THE TYPE OF DEVICE

Press **HELP** again to return to the List menu.)

Display the Device Type of a Specified Device Press **ENTER** when the *D* is blinking to select *LIST DEV_TYPE*.

The System asks you for a module and device number:

TYPE IN MODULE & DEVICE:

Type the three-digit module number and three-digit device number using the numeric keypad and press **ENTER**. (Enter all leading zeros.) The System displays the device type for the address specified:

004-001 TYPE: **[**device type]

If you press **NEXT**, the System displays the device type for the next device in the sequence:

004-002 TYPE: *Edevice type*]

With each press of **NEXT**, the System continues to display device types until there are no more devices for that module. The System then returns to the List menu. To proceed to another module, follow the preceding instructions.

Print a List of Devices Assigned to a Specified Module

Press **PRINT** when the *D* is blinking to select *LIST DEVICE*. The System asks you for a module number:

TYPE IN MODULE NUMBER:

Type only the module number and press **PRINT**. (Enter all leading zeros.) The System prints a list of all device types assigned to the specified module in a format similar to the following:

Listing of Device Types Module 1 (ALD): 1-TRI-D Dual Switch Input

- 2-TRI-D Dual Switch Input
- 4-TRI-D Switch input + Relay 5-TRI-S Switch Input
- 7-TRI-S Switch Input

10-ID-60T-135 Thermal Detector 11-ID-60T-135 Thermal Detector

15-ID-60I Ionization Detector

16-ID-60I Ionization Detector

(To end a menu session and return to the Main Menu or to leave the menu at any time, press the Up arrow key to go backward one menu each time.)

List: Message

Use *List Message* to show the CSG-M assigned custom message of a particular device.

From the List menu use the Left or Right arrow key to cause the *M* in *MESSAGE* to start blinking:

LIST: MOD_TYPE DEV_TYPE MESSAGE

(If you press **HELP** at this point, the System displays:

SHOW MESSAGE FOR A DEVICE

Press **HELP** again to return to the previous display.)

Display the Device Message of a Specified Device

Press **ENTER** when the *M* in *MESSAGE* is blinking to select *List Message*.

The System asks you for a module and device number:

TYPE IN MODULE & DEVICE:

Type the three-digit module number and three-digit device number using the numeric keypad and press **ENTER**. The System displays the message for the address specified:

069-001 [custom message]

If you press **NEXT**, the System displays the message for the next device number in the sequence:

OL9-OO2 [custom message]

With each press of **NEXT**, the System continues to display device messages until there are no more devices for that module.

To proceed to another module, follow the preceding instructions.

Print a List of System Messages for a Specified Module

Press **PRINT** when the *M* in *MESSAGE* is blinking to select *List Message*. The System asks you for a module number:

TYPE IN MODULE NUMBER:

Type only the module number and press **PRINT**. (Enter all leading zeros.) The System prints a list of all the custom device messages for the specified module in a format similar to the following:

Listing of Messages	in Module 1 (ALD):
4-Conf.Rm	5-Cafeteria
6-Exec. Off. 1	7-Cmptr Rm
8-Exec. Off. 2	9-Camera Rm
10-Exec. Off. 3	11-Conf. Rm

(To end a menu session and return to the Main Menu or to leave the menu at any time, press the Up arrow key to go backward one menu each time.)

List: Software Version

Use List Software Version to show:

- 1. System Custom Message
- 2. MXL-IQ Software Version
- 3. Version of CSG-M used to Create the System
- 4. CSG-M File Name Installed
- 5. Date and Time of Installation

From the List menu use the Left or Right arrow key to cause the S in S/W_VERSION to start blinking:

LIST: <u>S</u>/W_VERSION STATUS

(If you press **HELP** at this point, the System displays:

SHOW SOFTWARE VERSION

Press **HELP** again to return to the previous display.)

Display the Software Version of Your System Software

Press **ENTER** when the *S* is blinking to select *List S/W_VERSION.*

The System displays the CSG-M assigned System custom message:

MSG Esystem custom messagel

Press **NEXT** again to display the MXL-IQ software version:

MXL-IQ VERSION: **[**version number]

Press **NEXT** again to display the version of CSG-M used to create this System.

CSG VERSION: **[**version number]

Press **NEXT** again to display the CSG-M file name installed.

SOURCE: **[file name]**

Press **NEXT** again to display the date and time of CSG-M installation:

LOADED: Itime and datel

Print the Software Version of Your System Software

Press **PRINT** when the S in SW_ VER-SION is blinking to select List S/ W_Version. The System prints the System Custom Message, MXL-IQ Software Version, Version of CSG-M Used to Create the System, CSG-M File Name Installed, and Date and Time of Installation:

Software Version Information at 11:35:30 Jul 01, 20XX

Installation: [system custom message]

MXL-IQ Version: 1.00 CSG Version: 6.09 Source: 050CT00 Loaded: 16:09:35 Oct 05, 20XX

(To end a menu session and return to the Main Menu or to leave the menu at any time, press the Up arrow key to go backward one menu each time.)

List: Output States

Use *List Output States* to show the current states of individual outputs in the MXL-IQ.

From the List menu use the left or right arrow key to cause the O in Output States to start blinking:

ZATATZ TUPTUO :TZIL

(If you press **HELP** at this point, the System displays:

SHOW/PRINT OUTPUT STATES

Press **HELP** again to return to the List menu.)

Display the Output States of One Device

Press **ENTER** to select *List Output States*. The System asks you for a module and device number.

ТҮРЕ	IN	MODULE	&	DEVICE:	001-001
· · · -			-		

Type the three-digit module number and three-digit device number using the numeric keypad and press **ENTER**. (Enter all leading zeros.)

The System displays the output state of the device specified.

Press **NEXT** to display the address and output state of each succeeding device. When the System has shown the output states of all devices at that address, it returns to the List menu.

To leave the List output state menu without going through all subaddresses, press the Up arrow key. The System displays the List menu.

Print the Device Output State of Devices Assigned to a Specified Module

Press **PRINT** when the *O* in *Output States* is blinking. The System then asks for a module number.

TYPE IN MODULE NUMBER: Emodule number]

Type the three-digit module number and press **ENTER**. (Enter all leading zeros.)

The System prints the output state of all of the devices assigned to that module.

Listing of Output States for Module 1 (ALD): 1-Auxiliary Output: OFF 2-Auxiliary Output: ON 3-Auxiliary Output: ON 4-Auxiliary Output: OFF

List: Device Usages

Use *List Device Usages* to show the uses of individual devices as programmed in CSG-M.

From the List menu, use the left or right arrow key to cause the *D* in *DEV_USAGES* to start blinking:

LIST: DEV_USAGES

(If you press **HELP** at this point, the System displays:

SHOW/PRINT DEVICE USAGES

Press **HELP** again to return to the List menu.)

Display the Usage of One Device

Press **ENTER** to select *List Dev_usages.* The System asks you for a module and device number.

TYPE IN MODULE & DEVICE: OOL-OOL

Type the three-digit module number and three-digit device number using the numeric keypad and press **ENTER**. (Enter all leading zeros.)

The System displays the use of the device specified (i.e., Alarm, Trouble, or Status).

Press **NEXT** to display the address and use of each succeeding device. When the System has shown the uses of all devices at that address, it returns to the List menu.

To leave the *List Dev_usage* menu without going through all subaddresses, press the Up arrow key. The System displays the List menu.

Print the Device Usages of Devices Assigned to a Specified Module

Press **PRINT** when the *D* in *DEV_USAGES* is blinking. The System then asks for a module number.

TYPE IN MODULE NUMBER: Emodule number]

Type the three-digit module number and press **ENTER**. (Enter all leading zeros.)

The System prints the uses of all of the devices assigned to that module.

Listing of Device Usages for module 1 (ALD) 1- ALARM 2- TROUBLE 3- STATUS 4- ALARM 5- TROUBLE 6- OUTPUT ONLY

List: Node Address

Use *List Node Address* to show the panel's X-Net node address.

From the List menu, use the left or right arrow key to cause the *N* in *NODE AD-DRESS* to start blinking:

LIST: NODE ADDRESS

Display the Node Address

Press **ENTER** to select *List Node Address*. The System displays the X-Net node address for that particular MXL-IQ panel.

List: Air Sampling

Use *List Air Sampling* to display operational characteristics of the Air Sampling devices.

Press **ENTER** when the *A* in *AIR* SAMPLING is blinking to select *List AIR* SAMPLING.

Use the Left or Right arrow to move to the following selections:

AIR SAMPLING: Smoke_Lev Flow_Lev Trip_Pts

(If you press **HELP** at this point, the System displays:

DISPLAY AIR SAMPLING SMOKE LEVEL

Press **HELP** again to return to the List menu.)

List Air Sampling – Smoke_Lev

Press **ENTER** when the S in SMOKE_LEV is blinking to select List AIR SAMPLING SMOKE_LEV.

The System asks you for a module and device number:

ТҮРЕ	ΙN	MODULE	& DEVICE
------	----	--------	----------

Type the three-digit NIM-1 (ASP) module number and three-digit Air Sampling device address number using the numeric keypad and press **ENTER**. The system displays the smoke level for the address specified:

010-004	50%	>> !!! *	*<<	PREl

The bar graph in the example above shows the following information for the Air Sampling device at address 010-004:

50% = 50% of full scale smoke level

! = active trip point at 30%

* = inactive trip point at 60% and 100% PRE1 indicates the device is in PreAlarm 1

PRE2 and **ALRM** indicate the PreAlarm 2 and Alarm states, respectively. The bargraph continuously updates to reflect the current state of the Air Sampling zone that is being viewed.

Print the Air Sampling Smoke Level

Press **PRINT** when the S in *SMOKE_LEV* is blinking to print the AIR SAMPLING SMOKE_LEV.

The System asks you for a module number:

TYPE IN MODULE NUMBER:

Type the three-digit NIM-1 (ASP) module number and press **ENTER**. The System sends smoke levels for all devices on the selected MODULE to the printer.

Air Sampling Smoke Levels at 13:23:31 Jan 03, 20XX 010-001 13:23:31 Jan 03,20XX

0% Scale >> . . .<< NORM, Cust Msg 1 010-002 13:23:32 Jan 03,20XX

100% Scale >>■!■!■!<< ALRM, Cust Msg 010-010 13:23:31 Jan 03,20XX

42% Scale >>■!■ . .<< PRE1, Cust Msg 10 010-011 13:23:32 Jan 03,20XX

100% Scale >>■!■! .<< PRE2, Cust Msg 11

For printed bar graphs, the characters shown below indicate the following:

. = an inactive trip point

! = an active trip point

List Air Sampling – Flow_Lev

Press **ENTER** when the *F* in *FLOW_LEV* is blinking to select *LIST AIR SAMPLING FLOW_LEV*.

The System asks you for a module and device number:

TYPE IN MODULE & DEVICE

Type the three-digit NIM-1 (ASP) module number and three-digit Air Sampling device address number using the numeric keypad and press **ENTER**. The System displays the air flow level for the address specified:

010-004	50%	>>	* <<	NORM
---------	-----	----	------	------

The bar graph in the example above shows the following information for the Air Sampling device at address 010-004:

50% = 50% of full scale air flow level

- ! = low air flow trip point at 20%
- = high air flow trip point at 90%

NORM indicates that the current air flow level is at a normal level, **HIGH** indicates airflow is too high, and **LOW** indicates airflow is too low. The bar graph continuously updates to reflect the current state of the Air Sampling zone that is being viewed.

Print the Air Sampling Flow Level

Press **PRINT** when the *F* in *FLOW_LEV* is blinking to print the AIR SAMPLING FLOW_LEV.

The System asks you for a module number:

TYPE IN MODULE NUMBER:

Type the three-digit NIM-1 (ASP) module number and press **ENTER**. The System sends air flow levels for all devices on the selected MODULE to the printer.

Air Sampling Air Flow Levels at 13:23:31 Jan 03, 20XX 010-001 13:23:31 Jan 03,20XX 0% Scale >> . . << LOW, Cust Msg 1 010-002 13:23:32 Jan 03,20XX 100% Scale >> !!..... !!<< HIGH, Cust Msg 010-010 13:23:31 Jan 03,20XX

42% Scale >>■11 . << NORM, Cust Msg 10 010-011 13:23:32 Jan 03,20XX

100% Scale >>

List Air Sampling – Trip_pts

Press **ENTER** when the *T* in *TRIP_PTS* is blinking to select *LIST AIR SAMPLING TRIP_PTS*.

The System prompts you to select between ALARM_TRIP and FLOW_TRIP.

Press **ENTER** when the *A* in *ALARM_TRIP* is blinking to select *LIST TRIP_PTS ALARM_TRIP.*

The System asks you for a module and device number.

TYPE IN MODULE & DEVICE

Type the three-digit NIM-1 (ASP) module number and three-digit Air Sampling device address number using the numeric keypad and press **ENTER**. The System displays the current alarm trip point settings for the address specified:

010-004 P1: 20% P2: 60% ALM: 90%

Print the Air Sampling Alarm Trip Pts Press **PRINT** when the *A* in *ALARM_TRIP* is blinking to print the AIR SAMPLING ALARM_TRIP points.

The System asks you for a module number:

TYPE IN MODULE NUMBER:

Type the three-digit NIM-1 (ASP) module number and press **ENTER**. The System sends alarm trip point levels for all devices on the selected MODULE to the printer.

Air Sampling Alarm Trip Points at 13:23:31 Jan 03, 20XX 010-001 13:23:31 Jan 03,20XX, PRE1: 10% PRE2: 30% ALFM: 100%, Cust Msg 1

010-002 13:23:31 Jan 03,20XX, PRE1: 30% PRE2: 50% ALRM: 90%, Cust Msg 2

010-010 13:23:31 Jan 03,20XX, PRE1: 10% PRE2: 50%

ALRM: 100%, Cust Msg 10

010-011 13:23:31 Jan 03,20XX, PRE1: 50% PRE2: 80% ALFM: 100%, Cust Msg 11

Press **ENTER** when the *F* in *FLOW_TRIP* is blinking to select *LIST TRIP_PTS FLOW TRIP.*

The System asks you for a module and device number.

TYPE IN MODULE & DEVICE

Type the three-digit NIM-1 (ASP) module number and three-digit Air Sampling device address number using the numeric keypad and press **ENTER**. The System displays the current air flow trip point settings for the address specified:

010-004	1011:	20%	HIGH:	80%
			1170111	00%

Print the Air Sampling Flow Trip Pts

Press **PRINT** when the *F* in *FLOW_TRIP* is blinking to print the AIR SAMPLING FLOW_TRIP points.

The System asks you for a module number:

TYPE IN MODULE NUMBER:

Type the three-digit NIM-1 (ASP) module number and press **ENTER**.

The System sends air flow trip point levels for all devices on the selected MODULE to the printer.

Air Sampling Air Flow Trip Points at 13:23:31 Jan 03, 20XX 010-001 13:23:31 Jan 03,20XX, LOW: 10% HIGH: 90%,

- Cust Msg 1
- 010-002 13:23:31 Jan 03,20XX, LOW: 20% HIGH: 80%, Cust Msg 1
- 010-010 13:23:31 Jan 03,20XX, LOW: 30% HIGH: 70%, Cust Msg 1
- 010-011 13:23:31 Jan 03,20XX, LOW: 10% HIGH: 80%, Cust Msg 1

List: Percent/ft

Use *List Percent/ft* to show settings in percent/ft obscuration of the ILI and ILP Series detectors.

From the List menu, use the left or right arrow key to cause the *P* in *PERCENT/FT* to start blinking:

LIST: PERCENT/FT

Press **ENTER** to select *List Percent/ft*. The System asks you for a module and device number.

TYPE IN MODULE & DEVICE: OOL-OOL

Type in the three-digit module number and the three-digit device number using the numeric keypad and press **ENTER**. The System displays the following menu for that device (the *S* in *Senstvty* will be blinking):

002-003	SENSTVTY	PRE-ALARM	ANALOG

List Percent/ft – Senstvty

The display for Sensitivity supplies the current sensitivity as read back from the detector and is similar to the following (readings are dynamic):

MNON TT\\L2002 SENS 1.4%/FT NORM

List Percent/ft – Pre-alarm

The display for Pre-alarm supplies the current Pre-alarm setting read back from the detector and is similar to the following (readings are dynamic):

002-003 PRE-ALARM 1.4%/FT NORM

List Percent/ft – Analog

The display for Analog supplies the current analog2 reading read from the detector and is similar to the following (readings are dynamic):

MNON TAXYEL SUBS TOTAL COD-2003

To leave the *Percent/ft* menu without going through all subaddresses, press the Up arrow key. The System displays the List menu.

Print the Analog Loop's Current Readings in Percent/ft Obscuration

Press **PRINT** when the *P* in *Percent/ft* is blinking. The System asks you for a module number.

TYPE IN MODULE NUMBER:

Type the three-digit module number using the numeric keypad and press **ENTER**. The System shows the following menu for that device (the *S* in *Senstvty* will be blinking):

001-001 7	<u>S</u> ENSTVTY	PRE-ALARM	ANALOG
-----------	------------------	-----------	--------

The System prints either the Sensitivity, Prealarm, or Analog of all the devices for the specified module in a format similar to the following (NA = ID-60 detector):

%/ft SE	ENSITIVI	TIES FC	R MODUL	E 2
1-3.00	2-NA	3-1.4	4-3.1	5-1.4
6-1.4	7-ND	8-ND	9-ND	10-ND
11-ND	12-ND	13-ND	14-ND	15-ND
16-ND	17-ND	18-ND	19-ND	20-ND
21-ND	22-ND	23-ND	24-ND	25-ND
26-ND	27-ND	28-ND	29-ND	30-ND
31-ND	32-ND	33-ND	34-ND	35-ND
36-ND	37-ND	38-ND	39-ND	40-ND
41-ND	42-ND	43-ND	44-ND	45-ND
46-ND	47-ND	48-ND	49-ND	50-ND

51-ND 52-ND 53-ND 54-ND 55-ND 56-ND 57-ND 58-ND 59-ND 60-ND

List: ASD_apps

Use *List ASD_apps* to display operational characteristics of the ASD devices.

From the List menu use the left or right arrow key to cause the *A* in *ASD_Apps* to start blinking:

LIST: <u>A</u>SD_APPS

Display the Operational Characteristics of One Device

Press **ENTER** to select *ASD_apps*. The System asks you for a module and device number:

TYPE IN MODULE & DEVICE:

Type the three-digit module number and three-digit device number using the numeric keypad and press **ENTER**. (Enter all leading zeros.)

The System displays the currently assigned application for the device specified. (Refer to the ASD Submenu Abbreviations on page I-1.)

Press **NEXT** to display the address and assigned application of each succeeding device. The System will exit the *ASD_Apps* menu if there are no more ASD devices in that module.

To leave the *List ASD_Apps* menu at any time, press the Up arrow key. The System displays the List menu.

To print the operational characteristics of the ASD devices assigned to an ALD Loop

Press **PRINT** when the *A* in *ASD_Apps* is blinking. The System asks you for a module number:

TYPE IN MODULE NUMBER:

Type the three-digit module number using the numeric keypad and press **ENTER**. (Enter all leading zeros.) The System prints a list of all the applications currently assigned to all the ASD devices in that ALD loop in a format similar to the following (ND = No Device):

1-NONE	2-PARK	3-ND	4-ND	5-ND
6–ND	7-ND	8-ND	9-ND	10-ND
11-ND	12-ND	13-ND	14-ND	15-ND
16-ND	17-ND	18-ND	19-ND	20-ND
21-ND	22-ND	23-ND	24-ND	25-ND
26-ND	27-ND	28-ND	29-ND	30-ND
31-ND	32-ND	33-ND	34-ND	35-ND
36-ND	37-ND	38-ND	39-ND	40-ND
41-ND	42-ND	43-ND	44-ND	45-ND
46-ND	47-ND	48-ND	49-ND	50-ND
51-ND	52-ND	53-ND	54-ND	55-ND
56-ND	57-ND	58-ND	59-ND	60-ND

CONTROL Menu

The Control menu has nine items from which to choose; six of the items have submenus, as follows (the shortened terms used in the menu are in parentheses):

Reset Sensitivity (Senstvty) Hi_3 Hi 2 Hi 1 Norm Low 1 Low 2 Low 3 Arm/Disarm (Arm/dis) Arm Disarm Output_on/off Arm Disarm Energize De_energize Loop arm/disarm arm disarm Net_link_request Air Sampling Alarm-trip Flow-trip Percent/ft Sensitivity(Senstvty) Pre-alarm Change-apps

Use the Control menu to perform the following functions:

- Reset the System
- Change the sensitivity of a smoke detector
- Arm or disarm an initiating device
- · Arm an output device
- Disarm and energize an output device
- Disarm and de-energize an output device

- Arm and disarm a loop
- Send a request to the Network Command Center (NCC) to disconnect the MXL from the network
- Change Air Sampling Alarm Trip points
 and Flow Trip points
- Change sensitivity and pre-alarm settings in percent/ft obscuration of the ILI and ILP detectors
- Change the application of an ASD device

Entering the Control Menu

From the Main Menu, use the arrow keys to cause the *C* in *CONTROL* to blink.

(If you press **HELP** at this point, the System explains the Control function:

TO MODIFY DATA FOR OPERATION

Press **HELP** again to return to the Main Menu.)

Press ENTER to select CONTROL.

The System asks you for a password before it allows you to use the Control functions. Enter your one- to five-digit password, using the numeric keypad, and press **ENTER** (See the discussion under **Entering Your Password** on page 3-17).

If the System accepts your password, it displays the first Control menu, with the *R* in *RESET* blinking:

CONTROL: <u>R</u>ESET SENSTVTY ARM/DIS

(To end a menu session and return to the Main Menu or to leave the menu at any time, press the Up arrow key to go backward one menu each time.)

Control: Reset

Use Control Reset to initiate a system reset at any time.

From the Control menu, use the Left or Right arrow key to cause the *R* in *RESET* to start blinking:

CONTROL: <u>R</u>ESET SENSTVTY ARM/DIS

(If you press **HELP** while the *R* in *RESET* is blinking, the System explains this function:

RESET SYSTEM

Press **HELP** again to return to the above menu.)

Press **ENTER** to reset the System and display the following message:

SYSTEM RESET

If the System is normal, when SYSTEM RESET is selected, the System displays the following:

SYSTEM ALREADY NORMAL

(To end a menu session and return to the Main Menu or to leave the menu at any time, press the Up arrow key to go backward one menu each time.)

Control: Sensitivity

Use *Control Sensitivity* to change the sensitivity settings of smoke detectors on analog loops.

From the Control menu, press the Right or Left arrow key to cause the *S* in *SENSTVTY* to start blinking:

CONTROL: RESET <u>S</u>ENSTVTY ARM/DIS

(If you press **HELP** at this point, the System displays:

CHANGE SENSITIVITY

Press **HELP** again to return to the above menu.)

Note that *Control Sensitivity* allows you to change the sensitivity settings of smoke detectors only; if you attempt to change the sensitivity setting of another type of device, the System displays:

EDD1-DD11 NOT SMOKE DETECTOR

If you enter any address for which there is no device assigned, the System displays:

NO DEVICE ASSIGNED

Press **ENTER** while the *S* in *SENSTVTY* is blinking to select *CONTROL SENSTVTY*.

The System asks you for a module number and device number:

TYPE IN MODULE & DEVICE:

Type the three-digit module number and three-digit device number using the numeric keypad and press **ENTER**. The System shows the following display:

001-001 Norm Hi_1 Hi_2 Hi_3

The current sensitivity setting is highlighted. The System offers you a choice of seven levels of sensitivity: *Hi_3, Hi_2, Hi_1, Norm, Low_1, Low_2* or *Low_3*. Use the Right and Left arrow keys to highlight the level you wish to set for the smoke detector specified and press **ENTER**. The System makes the change in sensitivity setting.

Press **NEXT** to move through the devices until you display the ones you want to change, and follow the instructions above for making the changes.

When the System has displayed the highest numbered device for the module specified, it returns to the *Control* menu. You can select another address by selecting SENSTVTY and following the instructions above.

To leave the *Control Sensitivity* displays without going through the entire list, press the Up arrow key. The System displays the *Control* menu.

(To end a menu session and return to the Main Menu or to leave the menu at any time, press the Up arrow key to go backward one menu each time.)

Control: Arm/dis

Use *Control Arm/dis* to enable or disable the operation of an initiating device.

From the Control menu, press the Left or Right arrow key to cause the *A* in *ARM/DIS* to start blinking.

(If you press **HELP** at this point, the System displays:

DISARM OR ARM DEVICES

Press **HELP** again to return to the Control menu.)

Press **ENTER** while the *A* in *ARM/DIS* is blinking to select *Control Arm/dis*.

The System asks you for the module number and device number of the detector you wish to arm or disarm. Type the threedigit module number and three-digit device number using the numeric keypad and press **ENTER**. (Enter all leading zeros.) The System displays:

OOL-OOL ARM DISARM

The System offers you a choice of arming or disarming the device. Use the Right and Left arrow keys to highlight your choice and press **ENTER**. The System makes the change.

When you disarm an input device, the System automatically annunciates the disarming as a Trouble and lights the PARTIAL SYSTEM DISABLE LED.

Press **NEXT** to move through the devices until you display the ones you want to change; follow the instructions above for making the changes.

When the System has displayed the highest numbered device for the module specified, it returns to the Control menu. To arm or disarm another module device, select *ARM/DIS* and follow the preceding instructions.

(To end a menu session and return to the Main Menu or to leave the menu at any time, press the Up arrow key to go backward one menu each time.)

Control: Output on/off

Use *Control Output_On/Off* to arm or disarm an output device. In addition, you can energize or de-energize disarmed output devices.

From the Control menu, press the Left or Right arrow key to cause the *O* in *OUTPUT* to start blinking:

CONTROL ARM/DIS <u>O</u>UTPUT ON/OFF

(If you press **HELP** at this point, the System displays:

TURN OUTPUTS ON OR OFF

Press **HELP** again to return to the above menu.)

Press **ENTER** while the O in OUTPUT is blinking to select CONTROL_OUTPUT ON/ OFF.

The System asks for a module number and device number of the device you wish to turn on or off (energize or de-energize). Type the three-digit module number and threedigit device number using the numeric keypad and press **ENTER**. (Enter all leading zeros.)

The System shows the following display:

253-005 ARM DISARM

The System offers you a choice of arming or disarming the device.

Use the Right and Left arrow keys to highlight your choice and press **ENTER**.

If you have armed the device, you can press **NEXT** to display the number of the next device in the sequence. You can also press the Up arrow key to return to the Control menu.

NOTE: You must first disarm a device if you wish to energize or de-energize it.

When you disarm an output device, the System automatically annunciates the disarming as a Trouble and a Partial System Disable.

If you choose to disarm an output device, the System then asks if you wish to energize it or de-energize it:

253-005 ENERGIZE DE_ENERGIZE

Use the Right or Left arrow key to energize or de-energize the device and press **ENTER**. Press **NEXT** to move through the outputs until you display the ones you want to change; follow the instructions above for making the change.

When the System has displayed the highest numbered device for the module specified, it returns to the *Control* menu. To arm or disarm and energize or de-energize a device on a different module, follow the preceding instructions.

(To end a menu session and return to the Main Menu or to leave the menu at any time, press the Up arrow key to go backward one menu each time.)

Control: Loop Arm

Use *Control Loop Arm* to enable the operation of a loop of ALD initiating devices.

From the Control menu, press the Left or Right arrow key to cause the *L* in *LOOP_ARM* to start blinking.

(If you press **HELP** at this point, the System displays:

TO ARM ALL INPUTS ON A LOOP	
-----------------------------	--

Press **HELP** again to return to the Control menu.)

Press **ENTER** while the *L* in *LOOP_ARM* is blinking to select Control Loop_arm.

The System asks you for the module number of the ALD loop you wish to arm. Type the three-digit module number using the numeric keypad and press **ENTER**. (Enter all leading zeros.)

When you arm input devices, the System automatically annunciates the arming as a Trouble OUT, and lights the PARTIAL SYSTEM DISABLE LED.

(To end a menu session and return to the Main Menu or to leave the menu at any time, press the Up arrow key to go backward one menu each time.)

Control: Loop Disarm

Use *Control Loop Disarm* to disable the operation of a loop of ALD initiating devices.

From the Control menu, press the Left or Right arrow key to cause the *L* in *LOOP_DISARM* to start blinking.

(If you press **HELP** at this point, the System displays:

TO DISARM ALL INPUTS ON A LOOP

Press **HELP** again to return to the Control menu.)

Press **ENTER** while the *L* in *LOOP_DISARM* is blinking to select Control Loop_disarm.

The System asks you for the module number of the ALD loop you wish to disarm. Type the three-digit module number using the numeric keypad and press **ENTER**. (Enter all leading zeros.)

When you disarm input devices, the System automatically annunciates the disarming as a Trouble IN, and lights the PARTIAL SYSTEM DISABLE LED.

(To end a menu session and return to the Main Menu or to leave the menu at any time, press the Up arrow key to go backward one menu each time.)

Control: Net Link Request

Use *Control Net_Link_Request* to connect or disconnect that particular panel from the X-Network. When the panel is disconnected from the X-Network, the panel maintains its functions, but it does not exchange messages with other nodes in the X-Network.

From the Control menu, press the Left or Right arrow key to cause the *N* in *NET_LINK_REQUEST* to start blinking.

(If you press **HELP** at this point, the System displays:

REQUEST NCC DISCONNECT/RECON NODE

Press **HELP** again to return to the Control menu.)

Press **ENTER** while the *N* in *NET_LINK_REQUEST* is blinking to disconnect the panel from the X-Network.

To reconnect the panel to the X-Network, from the Control menu, press the Left or Right arrow key to cause the *N* in *NET_LINK_REQUEST* to start blinking and press **ENTER**.

Control: Air Sampling

Use *Control AIR SAMPLING* to display and change the operational characteristics of the Air Sampling devices.

Press **ENTER** when the *A* in *AIR* SAMPLING is blinking to select Control AIR SAMPLING.

The System prompts you to select between ALARM_TRIP and FLOW_TRIP.

Press **ENTER** when the *A* in *ALARM_TRIP* is blinking to select *CONTROL ALARM_TRIP*.

The System asks you for a module and device number.

TYPE IN MODULE & DEVICE

Type the three-digit NIM-1 (ASP) module number and three-digit Air Sampling device address number using the numeric keypad and press **ENTER**. The system displays the current alarm trip point settings for the address specified:

010-004 P1: 20% P2: 60% ALM: 90%

Use the numeric keypad and the left and right arrow keys to modify the value for P1, P2, and ALM (Alarm). Note that the following provisions apply:

- P1 must be less than or equal to P2 which must be less than or equal to ALM. If these values are different, the System will reject the settings.
- P1, P2, and ALM must be even multiples of 10% or the System will reject the settings.

Press **ENTER** when you are finished modifying the settings. The display should then show:

TRIP POINTS ACCEPTED

or

TRIP POINTS INVALID.

Press **ENTER** when the *F* in *FLOW_TRIP* is blinking to select *Control FLOW_TRIP*.

The System asks you for a module and device number.

ТҮРЕ	ΙN	MODULE	E &	DEVICE	
------	----	--------	-----	--------	--

Type the three-digit NIM-1 (ASP) module number and three-digit Air Sampling device address number using the numeric keypad and press **ENTER**. The system displays the current air flow trip point settings for the address specified:

|--|

Use the numeric keypad and the left and right arrow keys to modify the value for LOW and HIGH. Note that the following provisions apply:

- LOW must be less than HIGH, or the System will reject the settings.
- The System will reject the settings if they are not even multiples of 10%.

Press **ENTER** when you are finished modifying the settings. The display should then show TRIP POINTS ACCEPTED.

Control: Percent/ft

Use *Control Percent/ft* to change sensitivity and pre-alarm settings in percent/ft obscuration of the ILI and ILP series of detectors.

From the Control menu, press the Left or Right arrow key to cause the *P* in *Percent/ft* to start blinking. The System asks you for a module number and device number.

TYPE IN MODULE & DEVICE:

Type the three-digit module number and three-digit device number using the numeric keypad and press **ENTER**. The System displays the following:

OOL-OOL SENSTVTY PRE-ALARM

Control Percent/ft - Senstvty

The display for Sensitivity supplies the current sensitivity as read back from the detector and is similar to the following (readings are dynamic):

DO2-DO3 SENS 1.4%/FT NORM

In the previous message, **002-003** is the address. **Sens** is the type of response (Sensitivity or Pre-alarm). **1.4%/ft** is the smoke detector reading in %/ft obscuration and **Norm** is the text sensitivity range corresponding to the %/ft readings.

Use the left and right arrow keys on the keypad to lower or raise the %/ft reading. (Refer to the Sensitivity and Pre-Alarm Settings chart that follows.)

	РНОТО	ION
Pre-alarm adjust increment	.25% / ft.	.12% / ft.
Pre-alarm range	.25 - 2.0% / ft.	.2575% / ft.
Pre-alarm default	1.5% / ft.	.75% / ft.
Sensitivity adjust increment	~.25% / ft.	~.12% / ft.
Sensitivity range	1.25 - 3.4% / ft.	.6 - 1.6% / ft.
Sensitivity default (Norm)	3.0% / ft.	1.4% / ft.

After you change the sensitivity setting, the System prints the information for the selected device in a format similar to the following:

CMD CHANGE SENS 06:38:20 JUN 2, 20XX 002-004 1.4%/FT NORM

Control Percent/ft - Pre-alarm

The display for Pre-alarm supplies the current pre-alarm setting read back from the detector and is similar to the following (readings are dynamic):

002-003 PRE-ALARM .75%/FT NORM

In the previous message, **002-003** is the address. **Pre-alarm** is the type of response (Sensitivity or Pre-alarm). **.75%/ft** is the smoke detector reading in %/ft obscuration and **Norm** is the text sensitivity range corresponding to the %/ft readings.

Use the left and right arrow keys on the keypad to lower or raise the %/ft reading. (Refer to the Sensitivity and Pre-Alarm Settings chart.)

After you change the pre-alarm setting, the System prints the information for the selected device in a format similar to the following:

CMD CHANGE PRE-ALM 06:38:20 JUN 2, 20XX 002-004 1.4%/FT NORM

NOTE: Because the pre-alarm and sensitivity settings overlap, set the pre-alarm to at least an increment below the sensitivity setting.

Control: Change Apps

Use *Control Change_Apps* to change the application of an ASD device.

From the Control menu, press the Left or Right arrow key to cause the *C* in *Change_Apps* to start blinking.

(If you press **HELP** at this point, the System displays:

CHANGE DEVICE'S APPLICATIONS

Press **HELP** again to return to the Control menu.)

Press **ENTER** while the *C* in *Change_Apps* is blinking to select Control Change_Apps.

The System asks you for the module and device number.

TYPE IN MODULE & DEVICE:

Type the three-digit module number and three-digit device number using the numeric keypad and press **ENTER**. (Enter all leading zeros.)

Use the arrow keys to cycle through the 11 supported applications described in the ASD Submenu Abbreviations on page I-1, in Appendix I, and press **ENTER** to select the desired application.

The transaction and the time that it occurs will be printed on the printer as a confirmation. The example shown below assumes that no application is currently assigned to module 001, device 001:

Control: <u>Change_Apps Reset > [Press ENTER]</u>

Type in Module & Device: 001-001 [Enter module-device number, including all leading zeros]

001-001 \underline{N} ONE OFFC WHSE LOBY > [Use arrow keys to select the desired application]

001-001 NONE OFFC WHSE LOBY > [Press ENTER]

A statement will be printed out to confirm the change:

COMMAND CHANGE_APPS 09:41:43 AUG 07, 20XX 001-001 NONE -> OFFC

To leave the *Change_Apps* menu at any time, press the Up arrow key.

NOTE: If the ASD application is changed while Test ASD is on, the changes will not be effective until Test ASD is turned off.

TEST Menu

The Test menu has sixteen items from which to choose; three of those items have submenus, as follows (the shortened terms used in the menu itself are in parentheses):

Set_time Ground fault (GND_FLT) Power* Main Voltage Current Lamp_test LEDs Display Device LED MOI_Lamp_test X Network* M Network* Override Det_cleaned Event_log Alrm_only Trbl_only Superv_only Security_only All_events Hist Ctrl Hist_Erase PYRO_Diags PRE_ALARM ASD DEVICES SUMMARIZE MANUAL_ACTIVATE

*You can print a report of the information produced by these functions. See the discussions for *Test Power* and *Test Network*.

Use the Test menu for the following functions:

- Change the time and date in the System
- Test ground fault state
- Display the System's power condition
- Test the LEDs or the display on the MKB-4
- Test the LEDs on an analog device
- Perform lamp test on MOD-16 of MOI-7
- Display network performance characteristics
- Alarm verification/confirmation override
- IEC detector cleaned function
- Event (History) log menu
- Test Pre-alarm logic
- Test ASD detectors
- Record one summarized trouble for an entire module
- Perform testing on input points and simutale alarms

Entering the Test Menu

From the Main Menu, use the Left or Right arrow keys to cause the *T* in *TEST* to begin blinking.

(If you press **HELP** at this point, the System explains the Test function:

Press **HELP** again to return to the Main Menu.)

Press **ENTER** to select *TEST*. The System asks you for a password before it allows you to use the Test functions. Enter your one- to five-digit password, using the numeric keypad, and press **ENTER** (See the discussion under **Entering Your Password** on page 3-17).

If the System accepts your password, it displays the first Test menu.

(To end a menu session and return to the Main Menu or to leave the menu at any time, press the Up arrow key to go backward one menu each time.)

Test: Set Time

Use *Test Set_Time* to set the time and date for the System.

From the Test menu, use the Left or Right arrow key to cause the *S* in *SET_TIME* to start blinking:

TEST: DETECTOR NETWORK SET-TIME

(If you press **HELP** at this point, the System displays:

SET STSTEM TIME

Press **HELP** again to return to the above menu.)

Press **ENTER** when the S in SET_ TIME is blinking to select TEST SET_ TIME.

The System shows you the current System time, using a 24-hour clock, and the date:

SET TIME = 12:34:56 12/23/20XX

(If you press **HELP** at this point, the System displays:

TYPE HH:MM:SS MM/DD/YYYY <ENTER>

The Help display tells you to type the time and date, using the numeric keypad, in the following format: hour: minute: seconds_month/day/year, and then to press **ENTER** to set the time and date. Use the Right and Left arrow keys to skip over a correct digit.

Press **HELP** again to return to the above menu.)

Type the time and date as explained above and press **ENTER**. The System prints the current time and date on the printer and returns you to the Test menu.

(To end a menu session and return to the Main Menu or to leave the menu at any time, press the Up arrow key to go backward one menu each time.)

Test: Ground Fault

Use *Test Gnd_flt* to test the present condition of the ground fault detection circuitry.

From the Test menu, use the Left or Right arrow key to cause the *G* in *GND_FLT* to start blinking:

TEST: NETWORK SET TIME <u>GND_FLT</u>

(If you press **HELP** at this point, the System displays:

GROUND FAULT TEST

Press **HELP** again to return to the Test menu.)

Press **ENTER** when the *G* is blinking and the menu displays:

GND_FLT: MAIN

From the Ground Fault menu, press **ENTER** when the *M* in *MAIN* is blinking.

The System tests dynamically for ground fault and reports the results of the test on the display (*OK*, *PLUS*, or *MINUS*):

GROUND FAULT IS MINUS

If the message is other than *OK*, locate the loop and the device responsible. The display automatically changes to *OK* when the ground fault problem is corrected. (During this test, the System and its devices remain operational.)

(To end a menu session and return to the Main Menu or to leave the menu at any time, press the Up arrow key to go backward one menu each time.)

Test: Power

Use *Test Power* to test the System's battery voltage, AC voltage, and battery charge current.

From the Test menu, use the Left or Right arrow key to cause the *P* in *POWER* to start blinking:

TEST: GND-FLT POWER

(If you press **HELP** at this point, the System displays:

DISPLAY POWER

Press **HELP** again to return to the above menu.)

Press **ENTER** when the *P* is blinking and the menu displays:

POWER: MAIN

Display the AC Voltage, Battery Voltage, and Charging Current of the Main System

From the Power menu, press **ENTER** when the *M* in *MAIN* is blinking to select Main Power.

The System shows the following menu:

MAIN: VOLTAGE CURRENT

Press **ENTER** when the *V* in *VOLTAGE* is blinking to display the battery voltage:

BATTERY VOLTAGE = X.X VOLTS

Press **ENTER** again to display the AC voltage:

AC VOLTAGE = X VOLTS

Press the Up arrow key to return to the Main Power menu. Use the Right arrow key to cause the *C* in *CURRENT* to start blinking and press **ENTER**. The System shows the battery charge current in amps:

BATT CHG CUR = XX.X AMPS

Press the Up arrow key twice to return to the Power menu.

Print the AC Voltage, Battery Voltage, and Charging Current of the Main System

From the Power menu, press **PRINT** when the *M* in *MAIN* is blinking to select *MAIN POWER*. The System will print information in a format similar to the following:

Power Supply Statistics at 11:23:52 May 01, 20XX:

Battery Voltage = 26.0 volts Charging

```
CUR = 0.5 AMPS AC VOLTAGE = 113 VOLTS
```

Test: Lamp Test

Use *Test Lamp_test* to test the LEDs on the alphanumeric display on the MKB-4.

From the Test menu, use the Left or Right arrow key to cause the *L* in *LAMP* to start blinking:

TEST: GND-FLT POWER LAMP_TEST

(If you press **HELP** at this point, the System explains this function:

MKB-4 LAMP TEST

Press **HELP** again to return to the above menu.)

Press **ENTER** when the *L* is blinking to select *TEST LAMP_TEST*. The System displays the following menu:

LAMP_TEST: <u>L</u>ED'S DISPLAY

Press **ENTER** to test the LEDs and the audible on the MKB-4. The LEDs light for 5 seconds and then return to their previous state.

To test the alphanumeric display, press the Right arrow key once to cause the *D* in *DISPLAY* to start blinking and then press **ENTER**. The System tests the display and then returns to the Lamp Test menu.

(To end a menu session and return to the Main Menu or to leave the menu at any time, press the Up arrow key to go backward one menu each time.)

Test: Device LED

Use *Test Device_LED* to test the LEDs on the System's analog devices.

From the Test menu, use the Left or Right arrow key to cause the *D* in *DEVICE* to start blinking:

TEST: LAMP TEST DEVICE LED

(If you press **HELP** at this point, the System displays:

TURN ON DEVICE LEDs

Press **HELP** again to return to the above menu.)

Press **ENTER** when the *D* is blinking to select *TEST DEVICE_LED*.

The System asks you to type the module and device numbers. Type the three-digit module number and the three-digit device number and press **ENTER**. (Enter all leading zeros.)

The System displays the following menu for the device (the *O* in *ON* will be blinking):

OOL-OOL ON OFF

To turn on the LED for that device, press **ENTER**. The System turns on the LED for that device. Turning on a device LED automatically causes a Trouble to be annunciated.

Use the **NEXT** key to move through the devices until you display the ones whose LEDs you wish to test. Follow the instructions above.

When the System has displayed the highest numbered device for the module specified, it returns to the Test menu.

To turn on a device LED for a different module, select *DEVICE_LED* from the Test menu and follow the preceding instructions.

(To end a menu session and return to the Main Menu, or to leave the menu at any time, press the Up arrow key to go backward one menu each time.)

Test: MOI Lamp Test

Use *MOI_lamp_test* to test the MOD-16 outputs of an MOI-7.

From the Test menu, use the Left or Right arrow key to cause the *M* in *MOI* to start blinking:

TEST: DEVICE_LED MOI_Lamp_Test

(If you press **HELP** at this point, the System displays:

TO TEST MOI-7 / MOD-16 LAMPS

Press **HELP** again to return to the above menu.)

Press **ENTER** when the *M* is blinking to select *MOI_LAMP_TEST*.

The System asks you to type the module number. Type the three-digit module number and press **ENTER**. (Enter all leading zeros.)

If the MOI-7 module is present in CSG-M the MOD-16 outputs will be placed in a 30second lamp test mode. After 30 seconds, these outputs return to their previous state.

(To end a menu session and return to the Main Menu, or to leave the menu at any time, press the Up arrow key to go backward one menu each time.)

Test: Network (X-Network, M-Network)

This function is used only by Siemens Industry, Inc., engineers to observe network traffic so that they can evaluate the operation of the module communication network.

Test: Override

Use *Test Override* to override the CSG-M selected options for Alarm Verification and Alarm Confirmation.

From the Test menu, use the Left or Right arrow key to cause the *O* in *OVERRIDE* to start blinking.

(If you press **HELP** at this point, the System displays:

OVERRIDE ALARM VERIFY & CONFIRM

Press **HELP** again to return to the above menu.)

Press **ENTER** when the O in OVERRIDE is blinking and the menu displays:

OVERRIDE: ALR_VERIFY ALR_CONFIRM

Use the Left or Right arrow key to switch between *ALR_VERIFY* and *ALR_CONFIRM*.

Override the Alarm Verification CSG-M Selection

From the Override menu, press **ENTER** when the *A* in *ALR_VERIFY* is blinking to select Alarm Verification.

The System shows the following menu:

OVERRIDE: YES NO

A blinking Y in YES indicates that Alarm Verification Override is currently enabled. A blinking N in NO indicates that the Alarm Verification Override is currently disabled.

To enable Alarm Verification Override, use the Left or Right arrow key to cause the Y in YES to start blinking. Pressing **ENTER** when the Y in YES is blinking will cause Alarm Verification Override to be enabled. The System will display the following message:

OVERRIDE ENABLED

To disable Alarm Verification Override, use the Left or Right arrow key to cause the Nin *NO* to start blinking. Pressing **ENTER** when the *N* in *NO* is blinking will cause Alarm Verification Override to be disabled. The System will display the following message:

OVERRIDE DISABLED

In either case, if the Alarm Verification option was not selected in CSG-M, the System will display the following message:

FEATURE NOT ENABLED IN CSG

Override the Alarm Confirmation CSG-M Selection

From the Override menu, press **ENTER** when the *A* in *ALR_CONFIRM* is blinking to select Alarm Confirmation.

The System shows the following menu:

OVERRIDE: YES NO

A blinking Y in YES indicates that Alarm Confirmation Override is enabled. A blinking *N* in *NO* indicates that the Alarm Confirmation Override is disabled.

To enable Alarm Confirmation Override, use the Left or Right arrow key to cause the Y in YES to start blinking. Pressing **ENTER** when the Y in YES is blinking enables Alarm Confirmation Override. The System will display the following message:

OVERRIDE ENABLED

To disable Alarm Confirmation Override, use the Left or Right arrow key to cause the Nin *NO* to start blinking. Pressing **ENTER** when the *N* in *NO* is blinking disables Alarm Confirmation Override. The System will display the following message:

OVERRIDE DISABLED

In either case, if the Alarm Confirmation option was not selected in CSG-M, the System will display the following message:

FEATURE NOT ENABLED IN CSG

Test: Det_Cleaned

Use *Test Det_cleaned* to indicate that a selected detector has been cleaned. This option is only operational if IEC is enabled in the CSG-M (See Appendix F).

From the Test menu, use the Left or Right arrow key to cause the *D* in *DET_CLEANED* to start blinking:

TEST: OVERRIDE DET_CLEANED

(If you press **HELP** at this point, the System displays:

TO INDICATE DETECTOR CLEANED

Press **HELP** again to return to the above menu.)

Press **ENTER** when the *D* is blinking to select DET_CLEANED.

The System asks you to type the module and device numbers. Type the three-digit module number and the three-digit device number and press **ENTER**. (Enter all leading zeros.)

After entering the module-device, the MXL-IQ determines if the device is subject to IEC. If the device is not subject to IEC or if IEC is not enabled for the system, error messages display (*Device not subject to IEC; IEC not enabled in CSGM*).

If the device is an IEC detector, the MXL-IQ will display and print the time, date, moduledevice and custom message of the cleaned device.

Test: Event Log

See Section 6, MXL-IQ History Log.

Test: Pyro_diags

Use Test Pyro-diags to display a series of statistics typically used by Siemens Industry, Inc., to evaluate the operation of the System. A special password is required for access to this function.

Test: Pre_alarm

Use *Test Pre_alarm* to test pre-alarm logic.

From the Test menu, use the left or right arrow key to cause the P in Pre_alarm to start blinking:

TEST: PRE_ALARM

The System asks you for a module number and device number.

TYPE IN MODULE & DEVICE:

Type the three-digit module number and the three-digit device number using the numeric keypad and press **ENTER**.

The System then sends information to force this detector into pre-alarm. Once it prealarms, or after a delay, the MXL-IQ then restores the detector to its proper pre-alarm setting.

Test: ASD_Devices

Use *Test ASD_Devices* to disable ASD parameters and allow timely response to test gas.

From the Test menu, use the Left or Right arrow key to cause the *A* in *ASD_Devices* to start blinking.

(If you press **HELP** at this point, the system displays:

TEST: ASD DETECTORS

Press **HELP** again to return to the Test menu.)

Press **ENTER** to test the ASD devices present in the system. The System displays:

TESTING OF ASD DEVICE ENABLED

Press the ENTER key again and the System displays:

TESTING OF ASD DEVICE DISABLED

Press the ENTER key to toggle between Testing Enabled (Trouble In) and Testing Disabled (Trouble Out). When toggling between Testing Enabled and Testing Disabled, there is a three minute time period that separates the two states.

Activating the *ASD_Devices* command will post a Trouble into the system which will be printed out as:

TROUBLE IN 253 08:24:53 AUG 08, 20XX #8 - SIEMENS BUILDING TECHNOLOGIES -, ASD TESTING ENABLED, MXL PANEL

Pressing ENTER a second time will cause the following message to be printed out:

TROUBLE OUT 253 08:25:50 AUG 08, 20XX #9 - SIEMENS BUILDING TECHNOLOGIES -, ASD TESTING DISABLED, MXL PANEL

If *Test ASD_Devices* is activated and left alone, the system will automatically disable the test (time out) after four hours.

Test ASD_Devices is inhibited while the system is initializing or resetting.

Test: Summarize

Use Test Summarize to ignore known troubles, and instead view one summarized trouble for an entire module. This is typically used during installation and commissioning.

Select **Summarize** and press **ENTER**. The System displays the following menu:

Select_Mods ON OFF

Test: Summarize - Select_Mods

Use Test Summarize Select_Mods to scroll through all installed (CSG-M) module addresses and enable/disable the summarize feature for each module address. Choose **Select_Mods** and press **ENTER**. The System displays the following: OOT AE2 NO

Press NEXT and the System displays:

002 YES N0

The System flashes the currently active summarize selection for the module address. The operator may then press the right or left arrow keys to highlight either YES or NO and then press the **ENTER** key to accept and program the selection. When **ENTER** is pressed, the System scrolls to the next installed module address. The Up arrow key terminates the Select_Mods mode.

All Select_Mods selections remain intact until the System is turned off, even if summarize mode is toggled.

- One trouble is posted per module address, regardless of how many troubles are detected at that module address.
- A trouble is not posted unless at least one trouble is detected at that module address.
- The trouble report is consistent with existing MXL-IQ trouble messages and the text reads *Troubles summarized*.
- The MXL-IQ only reports TRBL-INs when summary mode is enabled at an address.
- Alarm, supervisory, security, and status event reporting are not effected.

Modules which are NOT selected for summary report their troubles as usual, even if summary mode is turned on for other module addresses.

When a module address is summarized, individually occurring troubles are not broadcast to XNET; the single Troubles summarized trouble is broadcast to XNET. The Troubles summarized trouble is implemented as any other system trouble, being logged to history, taking up one of the 300 trouble slots, and appearing in List Troubles requests. All summarize selections are unaffected through RESET and default to CSG-M setting at power up.

Test: Summarize - OFF

When **Summarize OFF** is selected, the System annunciates the following trouble:

System Commissioning Mode TRBL OUT

and turns off the Partial System Disable LED. Preexisting *Troubles summarized* events remain and the System reverts to normal trouble reporting and processing for all new troubles.

Test: Summarize - ON

When **Summarize ON** is selected, the System annunciates the following trouble:

System Commissioning Mode TRBL IN

and turns on the Partial System Disable LED. The System displays one summarized trouble for the total system.

Test: Manual_Activate

Use Test Manual_Activate to:

- Perform testing on input points and the associated output logic expected when the point is activated.
- Generate alarms and associated output activations.

Select **Manual_Activate** and press **ENTER**. The System asks you for a module number and device number.

Type In Module & Device: -

Type the three-digit module number and three-digit device number using rhe numeric keypad and press **ENTER**. Upon entering the device address, the System performs as follows based on the point type:

MANUAL INPUT POINT ACTIVATION

No Input Point	Error message.
Analog Smoke Detectors	System issues command to place device into the alarm state via sensitiity adjustment. Device then reports alarm as if an actual alarm occurred. Associated outputs follow.
All Other inputs	System will not issue any command to device, but will synthesize the reporting of alarm in by the device. Associated outputs follow.

Test::Manual_Activate - Test

This provides a remote switch that upon activation/deactivation of the TRI, the MXL-IQ reads the module-device address provided and preforms the operations outlined above. Thisuse is primarily for, but not limited to, testing intelligent duct detectors.

Testing and Troubleshooting

SYSTEM TEST

Important:

If the System is connected to the Fire Department, or activates an external System (for example, a leased line connection), disarm the related outputs before servicing to prevent activation. Notify persons in the facility that you are conducting a System test so that they can ignore any alarms that sound during testing. Be sure to reset the System at the end of the inspection.

To ensure maximum safety, follow the procedure described below. To ensure proper and reliable operation, we recommend the following inspection and testing schedule:

Every Six Months

- 1. Check the sensitivity of each detector, using the *List Sensitivity* menu (See page 3-26). Refer to Appendix B for a list of acceptable detector sensitivity ranges.
- 2. If the **PARTIAL SYSTEM DISABLE** LED is lit, check that all appropriate detectors are armed, using the Control **Arm/dis** menu (See page 3-38).
- 3. Activate a detector or alarm-initiating device. To test for *GoNo Go* operation,

use SIEMENS Test Gas P/N 315-

282747, following the instructions on the label. Check that the detector LED lights and that the proper indication is given at the Control Panel.

- 4. Verify that an alarm can be acknowledged and that the System can be silenced and reset (See **Acknowledge Alarms** on page 3-18).
- 5. Verify the time and date setting of the System clock (See **Test Set_Time** on page 3-43).

Every Year

- 1. Check that the System operates as programmed by CSG-M and in accordance with specifications.
- 2. Perform any other applicable tests required by national or local fire codes.

Fuse Replacement

Fuse ratings are as follows:

Fuse	For	Rating
F1	Main Power	8A, 3 AG, Normal Blow
F2	Battery	15A, 3 AG, Normal Blow
F3	CZM-1B6 Power	2A, 3 AG, Normal Blow
F4	24V Output	15A, 3AG, Normal Blow

The fuses are located on the upper portion of the SMB-2 (See Figure 2, page 1-4).

TROUBLESHOOTING

Troubleshooting both the external wiring and the MXL-IQ System wiring follows the steps in **System Function Checkout** on page 2-16. If a fault occurs, refer to the **Troubleshooting Guide.** Locate the type of fault or any trouble message displayed and follow the directions in the *Corrective Action* column. Sometimes you can locate a fault quickly using the **Troubleshooting Guide.** When this is not possible, continue with the checkout procedure on page 2-16 and then the **Troubleshooting Guide** until all faults and troubles are corrected. Then repeat the checkout procedure to ensure that no additional problems were introduced and that the original problem was corrected.

TABLE 19 TROUBLESHOOTING GUIDE

This guide assumes that all modules, devices, and wiring are installed.

Note: Do **NOT** change modules or wiring unless power is OFF. If available, use your printer during troubleshooting operations.

SYMPTOM PROBABLE CAUSE		PROBABLE CAUSE	CORRECTIVE ACTION
1.	POWER LED is not lit; display on MKB-4 is blank.	No AC Battery	Check AC and battery. Check fuses F1 and F2 on the SMB-2 and the circuitbreaker on the MPS-6. Check AC and battery wiring. If power connections are OK, check the cable between the SMB-2 and MKB-4 for proper installation.
2.	POWER LED is on, MKB-4 display is blank.	Problem on the MKB-4.	Adjust contrast control R14 on the ANN-1 board. Remove the MKB-4 and check cable from ANN-1 to the display. If MKB-4 is defective, replace it.
3.	MKB-4 display shows the following default message: CERBERUS PYROTRONICS MXL	Improper address on MKB-4 No communication between SMB-2 and MKB-4. Defective MKB-4. If MOM-2/4 installed, defective network modules(s). Defective SMB-2	Correct address setting on the MKB-4 using S1. See the installation instructions for the MKB-4, page 2-4. Check the cable between the SMB-2 and the MKB-4. Replace the cable if defective. Replace the MKB-4. Disconnect the MOM-2/4 from the SMB-2. If probelm resolved, reconnect MOM-2/4 and remove all modules from MOM-2/4. Reinstall all modules one at a time. Replace any that cause the problems to reoccur. Replace SMB-2
4.	Device troubles on analog loops.	Errors in loop wiring and installation of devices.	Check loop wiring for shorts, opens, etc. using the Field Wiring Checkout Guide (page 2-11). Check that all analog devices are I or IL Series devices, or are CZM-1B6s. See the list of compatible devices in the appendixes. Check that all devices are installed. Check that all devices installed comply with the configuration printout from CSG-M. Check printed trouble list for ID troubles and correct device IDs as required. Check devices using the FPI-32 Programmer Tester. Replace devices that fail to respond.

TABLE 19 TROUBLESHOOTING GUIDE (Continued)

SYI	MPTOM	PROBABLE CAUSE	CORRECTIVE ACTION
5.	Trouble with notification appliance circuits (NACs).	End-of-line resistor improperly or not installed.	Check that the end-of-line resistor is 2.2K, ½W and is installed according to the instructions.
		Notification appliances improperly installed.	Check notification appliances for presence of polarizing diodes and correct device wiring.
			Check NACs for proper wiring (shorts, opens, etc.). Use the Field Wiring Checkout Guide, page 2-11.
		Incompatible notification appliance connected.	Check P/N 315-096363 for a list of compatible notification appliances. Replace incompatible devices.
		Error in control logic functions.	Check the logic functions using the printout from CSG-M; correct and reload the System from CSG-M into the SMB-2.
6.	Output devices connected to System relays do not work.	Power source for ouput devices missing or not connected.	Check that the power source is connected and that power is available.
		Improper wiring of connected devices.	Check that output devices are properly wired.
		Connected devices are not compatible with power source.	Check that power source and ouput devices are compatible.
7.	CZM-1B6 reports a trouble.	No power to CZM-1B6.	On the SMB-2, check fuse F3. At the CZM-1B6 check power input; DC power must be 16-31 VDC. Check polarity.
		Wiring error on initiating device circuit.	Check for opens or incorrect or missing end-of-line resistor (4.7K, ¼W).
8.	Modules in MOM-2/4 do not work.	No power to MOM-2/4.	Check power cable connectors between the SMB-2 (P3) and the MOM-2/4 (P5). Replace the power cable, if defective.
		No communications between SMB-2 and MOM-2/4.	Check communications cable connections between the SMB-2 (P6) and the MOM-2/4 (P7). Replace the communications cable, if defective.
		Modules are not properly seated in edge connectors.	Remove and reseat all modules.
		Modules are not properly addressed.	Address the modules correctly using the printed configuration from CSG-M (See CSG-M Programming Manual, P/N 315-090381).
9.	CSM-4 does not respond to output logic commands.	Fuses are blown.	Check wiring for shorts using the Field Wiring Checkout Guide (page 2-11). Replace fuses.
		CSM-4 is improperly configured.	Check and correct the configuration using the installation instructions for the CSM-4 (P/N 315-090854) and the printed configuration from CSG-M (See CSG-M Programming Manual, P/N 315-090381).
		Incompatible notification appliances are connected.	Check P/N 315-096363 for a list of compatible notification applicances. Replace incompatible devices.
		Error in control logic functions.	Check the logic functions using the printout from CSG-M; correct and reload the System from CSG-M into the SMB-2 (See CSG-M Programming Manual, P/N 315-090381).
		Defective CSM-4.	Replace CSM-4.

Testing and Troubleshooting TABLE 19 TROUBLESHOOTING GUIDE (Continued)

SYN	ИРТОМ	PROBABLE CAUSE	CORRECTIVE ACTION
10.	CRM-4 does not respond to output logic commands.	Power source for device is missing or not connected. Error in control logic functions. Connected devices are incompatible with power source.	Check that the power source to the CRM-4 is connected and that power is available. Check the logic functions using the printout from CSG-M; correct and reload the System from CSG-M into the SMB-2 (See CSG-M Programming Manual, P/N 315-090381.) Check that the power source and output devices are compatible.
		Defective CRM-4.	Replace CRM-4.
11.	Zone troubles from CZM-4.	Errors in initiating device circuit wiring. Defective CZM-4.	Check for wiring errors using the Field Wiring Checkout Guide (page 2-11) and the installation instructions for the CZM-4 (page 2-14). Check that the end-of-line capacitor is the proper value and is properly connected. Unused zones must have end-of-line capacitors installed on MOM-2/4 screw terminals (50 MFD, 50 VDC polarized electrolytic capacitor). See the installation instructions for the CZM-4 (page 2-14). Replace the CZM-4.

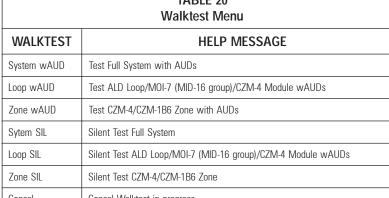
Walktest Operating Instructions

A Walktest of the MXL-IQ System enables a qualified technician to test the operation of input points on the MXL-IQ with or without disabling the entire fire alarm system. Testing can be either silent or with audible feedback in the following ways:

- 1. Entire system
- 2. ALD loop (60 subaddresses)
- 3. CZM-4 module (4 zones)
- 4. Conventional zone (individual CZM-1B6 or CZM-4 zone)
- 5. MOI-7 (MID-16) inputs (128 subaddresses)

If a printer is installed, a printed record of the test is made.

The Walktest is available with MXL-IQ Operating Software. You must enter your 1-5 digit password before you can use the Walktest functions. Enter the Walktest through the MXL-IQ Main Menu (See Chapter 3, Operating Instructions).


The MXL-IQ Main Menu structure with Walktest included is:

MXL-IQ Main Menu

ACKNOWLEDGE LIST CONTROL TEST WALKTEST

The table below shows the selections in the Walktest Menu and their related help messages.

TABLE 20 Walktest Menu		
WALKTEST	HELP MESSAGE	
System wAUD	Test Full System with AUDs	
Loop wAUD	Test ALD Loop/MOI-7 (MID-16 group)/CZM-4 Module wAUDs	
Zone wAUD	Test CZM-4/CZM-1B6 Zone with AUDs	
Sytem SIL	Silent Test Full System	
Loop SIL	Silent Test ALD Loop/MOI-7 (MID-16 group)/CZM-4 Module wAUDs	
Zone SIL	Silent Test CZM-4/CZM-1B6 Zone	
Cancel	Cancel Walktest in progress	
Extend	Reset test timer to 4 hours left	

INTRODUCTION

Walktest Operating Instructions

System w/AUD

Select this option to walktest all CZM-4 zones, CZM-1B6 zones, MID-16 inputs, and ALD inputs with audible feedback to the technician. This mode inhibits the MXL-IQ from annunciating real alarm conditions.

System SIL

Select this option to walktest all CZM-4 zones, CZM-1B6 zones, MID-16 inputs, and ALD inputs without audible feedback to the technician. This mode inhibits the MXL-IQ from annunciating real alarm conditions.

Loop w/AUD

Select this option to walktest input devices on a specific ALD loop, MOI-7 (MID-16) group, or on all four zones of a CZM-4 with audible feedback to the technician. This mode inhibits the MXL-IQ from annunciating real alarm conditions for the ALD loop or CZM-4 conventional zones in Walktest.

Loop SIL

Select this option to walktest input devices on a specific ALD loop, MOI-7 (MID-16) group, or all four zones of a CZM-4 without audible feedback to the technician. This mode inhibits the MXL-IQ from annunciating real alarm conditions for the ALD loop or CZM-4 conventional zones in Walktest.

Zone wAUD

Select this option to walktest an individual conventional zone (CZM-1B6 or CZM-4 zone) with audible feedback to the technician. This mode inhibits the MXL-IQ from annunciating real alarm conditions for the conventional zone in Walktest.

Zone SIL

Select this option to walktest an individual conventional zone (CZM-1B6 or CZM-4) without audible feedback to the technician. **This mode inhibits the MXL-IQ from annunciating real alarm conditions for the conventional zone in Walktest.**

Cancel

Select this option from the menu while in the Walktest mode to set the Walktest timer at the 1 minute left in Walktest mark. This allows the MXL-IQ to complete Walktest sequencing on devices placed in test (alarm) just before cancellation. The MXL-IQ completes the final 60 seconds of the Walktest as indicated in **Walktest Ending Sequence** (See page 5-4).

Extend

Select this option from the menu while in the Walktest mode to reset the Walktest timer to the *4 hours remaining mark.*

WARNING

A device placed in Walktest is disconnected from its usual functions. Alarm causing devices in Walktest DO NOT CAUSE ALARMS until the MXL-IQ is out of the trouble of Walktest.

Suggested Walktest Procedure

In order to reduce the chance of problems, the following procedure must be followed before performing the Walktest.

- Inform the person in charge of the MXL-IQ fire alarm system that a Walktest is to be performed and that part or all of the fire detection system will be disabled. It is also advisable (or may be required) to notify the fire department of the test.
- 2. Use the MXL-IQ's LIST menu to obtain a printout of the device types and custom messages for **ALL** modules to be walktested.
- 3. Review the list with the person in charge of the fire protection equipment to ensure that the custom messages provide adequate information for locating and testing the devices in question.
- 4. Disable the ASD applications in the system using *ASD_Device* in the TEST menu prior to performing the walktest.

Once the test ASD device option has been enabled using the test menu, the tester should wait 3 minutes before attempting to test the ASD devices. This will ensure that the ASD R-Algorithm has been disabled for the test. When the test is complete, press *ASD_Device* again to re-enable ASD R-Algorithm, or it will automatically re-enable after 4 hours. The System will not reset if the ASD devices are still in the disabled state.

- 5. Initiate Walktest. Test devices in a predetermined, orderly sequence.
- When the Walktest is complete (timed out/canceled), acknowledge the OUT OF TROUBLE condition and reset the MXL-IQ. When the system indicates SYSTEM NORMAL, the test is complete.

WARNING: A device placed in Walktest is disconnected from its usual functions. Alarm causing devices in Walktest do NOT cause alarms until the MXL-IQ is out of the trouble of Walktest.

In both the silent (SIL) and audible (wAUD) Walktest modes, information is displayed on the Control Panel LCD and printed on the printer (if a printer is installed). The audible (wAUD) mode also provides audible feedback to the technician with the testing of each input device. Audible feedback is NOT included on circuits with zone coded audibles. A system with **only** zone coded audibles ALWAYS results in a silent Walktest.

NOTE: The Walktest Ending Sequence

(See page 5-4) occurs *with audible warn-ings* in the audible Walktest modes.

NOTE: The MXL-IQ will not allow a walktest to be initiated if there are Alarms or Supervisory events in the event queues.

Walktest the System

To place all CZM-4 zones, MID-16 inputs, and ALD input devices in Walktest, follow the procedure below:

- Move the cursor to the *S* in *System wAUD* for a Walktest with audible feedback or to the *S* in *System SIL* for a silent Walktest.
- Press ENTER.

- The following events take place:
 - the PARTIAL SYSTEM DISABLE LED lights
 - the TROUBLE LED flashes
 - the internal audible sounds
 - the Walktest activated trouble for the MXL-IQ records on the trouble list
 - if a printer is installed, the trouble is also printed
- The LCD display on the MKB-4 reads:

In Walktest. Normal operation disabled. ENTER to continue.

• Press ENTER or wait 60 seconds and the display reads:

Walktest expires in 4 hrs unless canceled. ENTER to continue.

- Press ENTER, or wait 60 seconds and the MXL-IQ returns to the Walktest menu. (The MXL-IQ is in system Walktest.) The LCD indicates the time remaining in Walktest in the last five positions on the display. The time is indicated in HH:MM (hours:minutes) until less than one hour remains, then it is indicated in MM:SS (minutes:seconds).
- Locate the device to be tested and place that device in alarm (or trouble). When the event is reported to the MXL-IQ, the following sequence occurs:
- When the System is in the audible Walktest mode, all silenceable and nonsilenceable audibles that are not already active or disarmed sound the code, depending on how the device is used in the CSG-M. The codes are:

EVENT	CODE
ALARM	2 seconds on, then off
SUPERVISORY	2 one-second pulses (on-off)
TROUBLE	4 seconds on, then off
SECURITY	4 one-second pulses (on-off)
STATUS/OTHER	6 seconds on, then off

Walktest Operating Instructions

2. When a printer is installed, the printer prints a message similar to the following:

WLK **Eevent type]** IN/OUT device address time/date device type custom message, trouble type (if applicable)

- 3. The LCD displays the device address, custom message, *WLK IN/OUT* [event type], and *device type* for 8 seconds.
- 4. If the ALD device has an LED, it turns on for 30 seconds to provide additional feedback to the technician.

If the MXL-IQ detects multiple events, they are automatically spaced 8-10 seconds apart to allow for separation of the coding. Up to five simultaneous events may be queued for processing.

Walktest Ending Sequence

NOTE: This sequence does not occur in Silent Walktest.

When 5 minutes remain in Walktest, all silenceable and non-silenceable audibles that are not already active or disarmed cycle on-off five times (1 second on) to indicate that the Walktest will time out in 5 minutes. This occurs in the audible mode only.

When 1 minute remains, event coding and the processing of devices to the LCD are suspended. If a device is alarmed, it is cycled silently through the resetting sequence.

When 45 seconds remain, all silenceable and non-silenceable audibles that are not already active or disarmed cycle on-off until Walktest times out. Do NOT continue to walktest devices. This 45 second period of no new Walktest events ensures that all devices are reset when the Walktest timer expires and the System returns to normal operation. Alarming a device during this period might result in the reporting of erroneous events when the system returns to normal operation.

Walktest Entire ALD Loop, MOI-7 (MID-16), or CZM-4 Module

To place an ALD loop of input devices, an entire set of MID-16 (MOI-7) inputs, or all four zones of a CZM-4 module in Walktest, follow the procedure below:

- Move the cursor to the *L* in *Loop wAUD* for a Walktest with audible feedback or to *Loop SIL* for a silent Walktest.
- Press ENTER.
- The MXL-IQ prompts the user for the module number to be tested.
- Enter the desired module network address, including all leading zeros, followed by ENTER.
- If the network address entered is not an ALD, MOI-7, or CZM-4, the message *Invalid type for Walktest* is displayed for 2 seconds on the LCD. The display then returns to the Walktest menu.
- If the module type is an ALD, MOI-7, or CZM-4 in the CSG-M, the following events take place:
- the PARTIAL SYSTEM DISABLE LED lights
- the TROUBLE LED flashes
- the internal audible sounds
- the Walktest activated trouble for the module appears on the trouble list
- if a printer is installed, the trouble is also printed
- The LCD display on the MKB-4 reads:

In Walktest. Normal operation disabled. ENTER to continue.

• Press ENTER or wait 60 seconds and the display reads:

Walktest expires in 4 hrs unless canceled. ENTER to continue.

- Press ENTER or wait 60 seconds and the MXL-IQ will return to the Walktest menu. (The MXL-IQ is in system Walktest.) The LCD indicates the time remaining in Walktest in the last five positions on the display. The time is indicated in HH:MM (hours:minutes) until less than 1 hour remains; then it is indicated in MM:SS (minutes:seconds).
- Locate the device to be tested and place that device in alarm (or trouble). When the event is reported to the MXL-IQ, the following sequence occurs:

1. When the System is in the audible Walktest mode, all silenceable and nonsilenceable audibles that are not already active or disarmed sound the code, depending on how the device is used in the CSG-M. The codes are as follows:

EVENT	CODE
ALARM	2 seconds on, then off
SUPERVISORY	2 one-second pulses (on-off)
TROUBLE	4 seconds on, then off
SECURITY	4 one-second pulses (on-off)
STATUS/OTHER	6 seconds on, then off

2. When a printer is installed, the printer prints a message similar to the following:

WLK Eevent type] IN/OUT device address time/date device type, custom message, trouble type (if applicable)

- 3. The LCD displays the device address, custom message, *WLK IN/OUT* [event type], and *device type* for 8 seconds.
- 4. If the ALD device has an LED, it turns on for 30 seconds to provide additional feedback to the technician.

If the MXL-IQ detects multiple events, they are automatically spaced 8-10 seconds apart to allow for separation of the coding. Up to five simultaneous events may be queued for processing.

Walktest Ending Sequence

NOTE: This sequence does not occur in Silent Walktest.

When 5 minutes remain in Walktest, all silenceable and non-silenceable audibles that are not already active or disarmed cycle on-off five times (1 second on) to indicate that the Walktest will time out in 5 minutes. This occurs in the audible mode only.

When 1 minute remains, event coding and the processing of devices to the LCD are suspended. If a device is alarmed, it is cycled silently through the resetting sequence.

Walktest Operating Instructions

When 45 seconds remain, all silenceable and non-silenceable audibles that are not already active or disarmed cycle on-off until Walktest times out. Do NOT continue to walktest devices. This 45 second period of no new Walktest events ensures that all devices are reset when the Walktest timer expires and the System returns to normal operation. Alarming a device during this period might result in the reporting of erroneous events when the system returns to normal operation.

NOTE: If an alarm or supervisory is reported from a device that is NOT in Walktest, the Walktest is suspended immediately. No further Walktest events are annunciated or coded. The Walktest remains running in the background of the MXL-IQ until it times out or is canceled.

WARNING:

When performing a partial system Walktest, **DO NOT TEST** any devices that are not in the Walktest as this will cause an alarm in the system.

Walktest Individual CZM-1B6 or CZM-4 Zone

To place an individual CZM-1B6 or CZM-4 zone in Walktest, follow the procedure below:

- Move the cursor to the Z in Zone wAUD for a Walktest with audible feedback or Z SIL for a silent Walktest.
- Press ENTER.
- The MXL-IQ prompts the user for the module and device number to be tested.
- Enter the desired network address, including all leading zeros, followed by ENTER.
- If the network address entered is not a CZM-4 or CZM-1B6 zone, the message *Invalid type for Walktest* is displayed for 2 seconds on the LCD. The display then returns to the Walktest menu.
- If the module type is a CZM-1B6 or CZM-4 zone in the CSG-M, the following events take place:

Walktest Operating Instructions

- the PARTIAL SYSTEM DISABLE LED lights
- the TROUBLE LED flashes
- the internal audible sounds
- the Walktest activated trouble for the zone records on the trouble list
- if a printer is installed, the trouble is also printed
- The LCD display on the MKB-4 reads:

In Walktest Normal operation disabled. ENTER to continue.

• Press ENTER or wait 60 seconds and the display reads:

Walktest expires in 4 hrs unless canceled. ENTER to continue.

- Press ENTER or wait 60 seconds and the MXL-IQ returns to the Walktest menu. (The MXL-IQ is in system Walktest.) The LCD indicates the time remaining in Walktest in the last five positions on the display. The time is indicated in HH:MM (hours:minutes) until less than 1 hour remains, then it is indicated in MM:SS (minutes:seconds).
- Locate the device to be tested and place that device in alarm (or trouble). When the event is reported to the MXL-IQ, the following sequence occurs:
- When the System is in the audible Walktest mode, all silenceable and nonsilenceable audibles that are not already active or disarmed sound the code, depending on the device usage in the CSG-M. The codes are as follows:

EVENT	CODE
ALARM	2 seconds on, then off
SUPERVISORY	2 one-second pulses (on-off)
TROUBLE	4 seconds on, then off
SECURITY	4 one-second pulses (on-off)
STATUS/OTHER	6 seconds on, then off

2. When a printer is installed, the printer prints a message similar to the following:

WLK **Eevent type]** IN/OUT device address time/date device type custom message, trouble type (if applicable)

- 3. The LCD displays the device address, custom message, *WLK IN/OUT* [event type], and *device type* for 8 seconds.
- 4. If the ALD device has an LED, it turns on for 30 seconds to provide additional feedback to the technician.

If the MXL-IQ detects multiple events, they are automatically spaced 8-10 seconds apart to allow for separation of the coding. Up to five simultaneous events may be queued for processing.

When 5 minutes remain, the system begins the **Walktest Ending Sequence** (See page 5-5).

NOTE: If an alarm or supervisory is reported from a device that is NOT in Walktest, the Walktest is suspended immediately. No further Walktest events are annunciated or coded. The Walktest remains running in the background of the MXL-IQ until it times out or is canceled.

WARNING:

When performing a partial system Walktest, **DO NOT TEST** any devices that are not in the Walktest as this will cause an alarm in the system.

Chapter 6

History Log

The MXL-IQ history system has five major parts. They are:

- 1. CSG-M options that control the type and number of events the MXL-IQ records.
- 2. Logging lists that record MXL-IQ hardware events.
- 3. Event viewing and listing in the MXL-IQ through the MKB-4 and attached printer.
- 4. History removal and collation outside the MXL-IQ.
- 5. Report generation and analysis on an external PC.

CSG-M History Options

The CSG-M gives the designer a set of options to use for operating the history system. The designer must first decide whether or not to use the history option. If he chooses to use it, he must select the mode of logging and which event types to include in the log. The History Recording Options are selected from the **Options**, **System Message, Authorizations** menu. (See Screen 1.)

To access the history option, move the cursor to highlight *History Recording Options* and press **ENTER**. The history recording option selection screen is then displayed as shown in Screen 2, page 6-2.

INTRODUCTION

Fire Protection Company Name	
CSG-M Memory=2900 used, 316848 free Options, System Message, Authorizations	CONFIG => TEST1
Options, System Message, Authorizations Other System Flags History Recording Options System Holidays	
Press First Letter or Move Cursor to Highlight Selection,	then ENTER

Screen 1 Options, System Message, Authorizations

Fire Protection Company Name	
CSG-M Memory=2900 used, 316852 free History Recording Options	CONFIG => TEST1
History mode> Small Log alarms> YES Log troubles> YES Log supervisories> YES Log securities> YES Log status> NO Log verification> NO Log output> NO Log output> NO Log resets> YES Log block acks> YES Log audible changes> NO Log logic sens. changes> NO Log arm/disarm> YES Log energize/deenergize> YES Log time changes> YES Log passwords> YES Log overrides> NO Enable History Log Via MKB Menu > NO	
Move Cursor to Select, ENTER to TOGGLE ESC	C = Prev. Menu

Screen 2 shows the default conditions for the history option when it is selected for the first time.

Keep in mind that the external data base may not contain all events that were ever detected. The completeness of the data base depends on whether the system operator extracts all event log information before it is lost.

Logging Methods

The MXL-IQ has two mutually exclusive ways to log events:

- 1. Small list
- 2. Circular list

Small List Logging

In the small list logging mode, the MXL-IQ stores up to 818 events (See Screen 3) in non-volatile memory. Non-volatile memory is memory that is not lost when the power is removed.

When the event storage area becomes **80% full**, a system trouble begins.

- the trouble audible sounds
- the trouble indicator lights
- the message *Event Log 80% full* shows on the LCD display
- this trouble operates like any other trouble in the system

When the event storage area becomes **90% full,** a new system trouble begins.

- the trouble audible sounds
- the trouble indicator lights
- the message *Event Log 90% full* shows on the LCD display
- this trouble operates like any other trouble in the system

When the event log is full, an new trouble condition occurs which causes the trouble audible to activate.

- the message *Log FULL, Events will be lost* appears on the display panel
- upon reset this trouble reappears, replacing the 90% trouble message
- when the log is full, all new events are lost

This system encourages removing history information into an external data base before the log overflows.

Circular Logging

In the circular logging mode, the MXL-IQ guarantees that the most current 500

events are stored in non-volatile memory. Once all available storage is used, the oldest history entries are replaced by newer ones. It is assumed that the end user selects this mode because he does not wish to maintain an external history data base. Therefore, only two warning troubles are issued:

- 1. When the number of recorded events reaches 80% of the total.
- 2. When the number of recorded events reaches 90% of the total. Once this trouble is acknowledged, it disappears until 80% of events is reached in the next cycle.

Using the circular logging mode does not prevent the storage of history information into an external data base. However, there is a high probability of loosing old events because of the limited warnings given when events are about to be overwritten.

Beginning with MXL-IQ Rev. 6.0, the user can suppress the Circular History Log Full Trouble. This option must be set in CSG-M and is only available if the history is in circular mode.

Fire Protection Company Name
CSG-M Memory=2900 used, 316852 free CONFIG => TEST1 DISPLAY MXL-IQ Panel Info
<pre>MXL-IQ PANEL INFO: MXL-IQ ROM Version> Rev. 1.00 MXL-IQ Main Board Version> 2 MXL-IQ Minimum Allowable Board Ver> Rev. 1.00 RAM size> 163840 bytes EEROM size> 114688 bytes MXL-IQ Dictionary Version> 0 MXL-IQ Alt. Dictionary Version> 0 History Memory Available> 818 (11) elements (used) IEC Storage Memory Available> 8189 bytes</pre>
PROGRAMMING INFO: Configuration Source Filename> TEST1 Configuration Size> 2802 bytes Last Programming Date> Wed Mar 22 15:28:16 20XX Configuration Revision Level> 215 Programming Info CHECKSUM> 1085
ANY KEY TO CONTINUE

History Log

Logging Item Selection

The system designer can log one or many event types. The selection is determined by the system requirements, the amount of event storage, and the external data base design. The following list summarizes event types that can be selected.

- * ALARMS
- * TROUBLES
- * SUPERVISORIES
- * SECURITIES
- STATUS CHANGES
- DEVICE VERIFICATION
- OUTPUT ACTIVATIONS
- * RESET
- * BLOCK ACKNOWLEDGE
- * AUDIBLE CONTROL
- SET SENSITIVITY
- AUTO SET SENSITIVITY
- * ARM/DISARM
- * ENERGIZE/DE-ENERGIZE
- * SET TIME
- * PASSWORD
- OVERRIDE
- *The items marked with an asterisk are set as default when the logging option is first selected. At least one event type must be selected.

MKB Menu Option to Enable, Disable and Erase History

Effective with MXL-IQ Revision 6.0, this option allows the user with the highest level password to turn on, turn off, or erase the History, provided that this system option has been enabled in the CSG-M and the History mode is other than NONE (that is, either small or circular).

Enabling the History Option in CSG-M From the **Main Menu**, select **System Configuration Edit**, then select **Options**, System Message Authorization, then select History Recording Options. From History Recording Options, move the cursor down to the line that reads Enable History Log Via MKB Menu, and select YES to compile the CSG-M program and download it to the MXL-IQ. (Refer to Screen 2.)

From the MKB Menu

Go to the TEST menu, move the cursor to the right until it highlights the Event-Log Menu item, and press **Enter** to bring up the submenu for MXL History. Move the cursor within the submenu to either the left or right to highlight the *Hist_Ctrl* item to turn on/off the History, or *Hist_Erase* to erase History. Notice that if the CSG-M system option **Enable History Log Via MKB Menu** is set to NO, these submenus are not accessible.

History turned on or off using the MKB menus is unaffected through PANEL RESET, and defaults to the setting in CSG-M upon power-up.

Pressing ENTER while the cursor is on *Hist_Erase* displays the following message on the MKB asking for confirmation:

Enter to proceed, other key to abort

Pressing ENTER erases the History section in the flash no matter what state the History is currently in (manually turned on or off); pressing any other key aborts the action.

Manual manipulation of History using the MKB is logged in History as in the following examples:

History	Manually	Erased	
History	Manually	Turned	off
History	Manually	Turned	on

NOTES:

- The operator should download the history log for future reference before erasing the MXL-IQ's History, since once the history is erased it cannot be undeleted.
- 2. The history menu options do not alter the history mode selected in the CSG-M.

Local History Log Query

There is a limited set of query selection and filter options available within the MXL-IQ. More complex options are only possible using an IBM PC that is running the MXL-IQ history support program.

The user can get history log information from the MKB-4 control panel by choosing the TEST menu, selecting EVENT_LOG, and pressing ENTER. A submenu of filter selections is then displayed. The choices are as follows:

Alrm_Only	Only display or print alarm events
Trbl_Only	Only display or print trouble events
Superv_Only	Only display or print supervisory events
Security_Only	Only display or print supervisory events
All_events	Display or print all recorded history events
Hist_Ctrl	Use to turn History on/off
Hist_Erase	Use to Erase History

- If the user makes a selection from the filter menu using the ENTER key of the MKB-4, the output goes to the LCD display.
- If the filter menu is selected using the PRINT key of the MKB-4, then the output goes to the system printer.
- If the group of events selected is empty, then the MXL-IQ displays or prints, as appropriate, *NO HISTORY ITEMS FOUND.*

Query Selection

The MXL-IQ supports one query selection option when generating listings or printouts from the MXL-IQ control panel.

From the TEST menu, move the cursor to the *EVENT_LOG* item and press the ENTER key to select history information. The MXL-IQ responds with a submenu that allows an event type filter to be selected. Cursor left or right until the desired filter type (See Query Filters, below) is reached and then press **ENTER** to display to the LCD, or **PRINT** to print on the MXL-IQ system printer.

The MXL-IQ asks for a starting date and time. If a time is entered, it suppresses the display or printing of older events. This initial display of time and date indicates the oldest history event recorded in memory. If the operator presses the ENTER key without making any numeric input, then all events in the log are selected.

Query Filters

A limited set of event type filters is available from the MXL-IQ control panel. The mutually exclusive filters are:

ALARMS

The *Alrm_Only* filter selection displays or prints incoming alarms, alarm acknowledgments, audible control, and resets. This set of events gives the operator a clear picture of the important events that constitute an alarm condition.

TROUBLES

The *Trbl_Only* filter displays or prints troubles and resets.

SUPERVISORIES

The *Superv_Only* filter displays or prints supervisories and resets.

SECURITIES

The *Security_Only* filter displays or prints securities, device arms, device disarms, and resets.

ALL

The *All_events* filter displays or prints all events.

HISTORY ON/OFF

The *Hist_Ctrl* filter turns the History events on/off.

HISTORY ERASE

The *Hist_Erase* filter erases the History events.

Navigating The History Display

When the operator selects the LCD display mode, the NEXT and HOLD keys are used to navigate through the log list. When the history log list first displays, the oldest history event shows in the display. Use the NEXT key to select the next newest event in the list and the HOLD key to select the next oldest event in the list. When either end of the history log list is reached, the message *End of History List* displays. Continuing to press either key wraps the list to the oldest or newest event, as appropriate.

The MXL-IQ remains in the history log list display mode until the up arrow key is pressed. As with all menu operations, if no keys are depressed for one minute, the current activity is canceled.

History Display Formats

History events display one at a time, in reverse chronological order, with the oldest event displayed first. History event displays use both lines of the LCD.

A division symbol (÷) in the first line of the display gives the operator a quick visual cue that the MXL-IQ is in the history display mode. If the history event begins with a module/device (mmm/ddd) code, the display is formatted as:

mmm÷ddd

If the line begins with an event type name, such as Block Acknowledge, then the first line of the display reads:

mmm÷ BLOCK ACKNOWLEDGE

where mmm is the module number of the MKB-4 or SMB that caused the event.

Device Event

A device event is any alarm, trouble, supervisory, or security input change of state. This change of state can be into or out of an active condition. The LCD displays:

DOL÷DOL LST FLOOR EAST WING ACK 321 12:24:48 Mar l0,20XX IN ALR

Where:

001÷001

The module/device address. The division sign indicates that this is a history log display.

1ST FLOOR EAST WING

The custom message assigned to this input.

321

The history log sequence number.

ACK

Optional field indicating that this is an acknowledgment event. This field is blank when the initiating event is displayed.

12:24:48 Mar 10, 20XX

The time that the event was logged.

IN

The event direction. The possible event direction types are:

- IN DEVICE REPORTS ACTIVE STATE
- OUT DEVICE REPORTS RETURN TO NORMAL STATE
- ON DEVICE TURNED ON
- OFF DEVICE TURNED OFF
- DIS DEVICE DISARMED (always occurs with ARM)

ALR

The event type. The possible abbreviations for Device Event types are:

- ALR ALARMS
- TBL TROUBLES
- SUP SUPERVISORY
- SEC SECURITY
- SAT STATUS
- VFY VERIFY
- DEV DEVICE (used for ON and OFF indications)
- ARM DEVICE ARMED (disarmed when used with DIS)

Reset Event

A reset event is any cold, warm, manual, or watchdog reset. The LCD displays:

253÷ WATCHD0G RESET 10100 1:22:04 Mar 10,20XX

Where:

253÷

The module address where the reset occurred. In this example, the watchdog reset originated on the SMB-2 at fixed address 253. The division sign indicates that this is a history log display.

WATCHDOG RESET

The message describing the type of reset that occurred. The possible messages for this field are:

COLD RESET WARM RESET MANUAL RESET WATCHDOG RESET

10100

The history log sequence number.

1:22:04 Mar 10,20XX

The time that the event was logged.

Set Time Event

A set time event records any change to the MXL-IQ real time clock. There are two occasions when a set time event occurs. They are:

- 1. When an operator goes into the TEST menu and manually changes the real time clock using the SET_TIME function.
- 2. At the end of a CSG-M configuration upload.

The LCD displays:

251÷ SET TIME - 2:00:30 Mar 10,20XX 10100 2:10:45 Mar 10,20XX

Where:

251÷

The module address where the time change occurred. In this example, the set time originated from the MKB-4 at address 251. The division sign indicates that this is a history log display.

SET TIME

The message describing this display as a set time event.

10100

The history log sequence number.

2:00:30 Mar 10, 20XX

The date and time in the MXL-IQ before the SET TIME function was performed.

2:10:45 Mar 10, 20XX

The time when the event was logged. Note that this is also the new date and time in the MXL-IQ as a result of this operation.

Block Acknowledge Event

A block acknowledge event occurs when the alarm, trouble, supervisory, or security acknowledge key is actuated on an MKB-4 in a system that allows block acknowledgments. The LCD displays:

251÷ All Alarms Acknowledged 4211 11:25:14 Mar 11:20XX

Where:

251÷

The module address where the block acknowledge occurred. In this example, the block acknowledge originated from the MKB-4 at address 251. The division sign indicates that this is a history log display.

All Alarms Acknowledged

The message that describes this display as an alarm block acknowledge event. The text changes to reflect one of the following four types of block acknowledgments, as appropriate:

- All Alarms Acknowledged
- All Troubles Acknowledged
- All Supervisories Acknowledged
- All Security Acknowledged

4211

The history log sequence number.

11:25:14 Mar 11, 20XX

The time that the event was logged.

History Log

Audible Silenced Event

This event occurs when the audible silence key is actuated on an MKB-4. The LCD displays:

251÷ AUDIBLE SILENCED 4212 11:25:14 Mar 11,20XX

Where:

251÷

The module address where the audible silence occurred. In this example, the audible silence originated on an MKB-4 at address 251. The division sign indicates that this is a history log display.

AUDIBLE SILENCED

The message that describes this event.

4212

The history log sequence number.

11:25:14 Mar 11, 20XX The time that the event was logged.

Override Event

This event occurs when an operator overrides a verification or confirmation. The LCD displays:

251÷ CONFIRMATION OVERRIDE 4212 11:25:14 Mar 11,20XX

Where:

251÷

The module address where the override operation occurred. In this example, the confirmation override originated on an MKB-4 at address 251. The division sign indicates that this is a history log display.

CONFIRMATION

The feature that is either being overridden or returned to normal. This selections in this field are:

CONFIRMATION VERIFICATION

OVERRIDE

The action that is being applied to the feature. The selections in this field are:

OVERRIDE NORMAL

4212

The history log sequence number.

11:25:14 Mar 11, 20XX

The time that the event was logged.

Audible Unsilenced Event

This event occurs when the audible unsilence key is pressed on an MKB-4. The LCD displays:

251÷ AUDIBLE UNSILENCED 4213 11:25:14 Mar 11,20XX

Where:

251÷

The module address where the audible unsilence occurred. In this example, the audible unsilence originated on an MKB-4 at address 251. The division sign indicates that this is a history log display.

AUDIBLE UNSILENCED

The message that describes this event.

4213

The history log sequence number.

11:25:14 Mar 11, 20XX

The time that the event was logged.

Password Event

This event occurs when an operator enters a new password at an MKB-4. The LCD displays:

251÷ PASSWORD LEVEL : 1 4214 11:25:14 Mar 11,20XX

Where:

251÷

The module address where the password event occurred. In this example, the

password change originated on an MKB-4 at address 251. The division sign indicates that this is a history log display.

PASSWORD LEVEL : 1

The message that describes this as a password event and indicates the new password authorization level that was entered.

4214

The history log sequence number.

11:25:14 Mar 11, 20XX

The time that the event was logged.

Configuration Changed Event

This event occurs when an operator uploads a new CSG-M configuration to the MXL-IQ control panel. The LCD displays:

254÷ Configuration changed 10->11 4214 11:25:14 Mar 11,20XX

Where:

254÷

The module addres where the configuration change occurred. In this example, the configuration change originated from the field programmer at address 254. The division sign indicates that this is a history log display.

Configuration changed

The message that describes this as a configuration change event.

10

The old configuration modification sequence number.

11

The new configuration modification sequence number.

Note: These values may not be consecutive. They depend on the number of modifications made to the configuration by the CSG-M.

4214

The history log sequence number.

11:25:14 Mar 11, 20XX

The time that the event was logged.

Manual Sensitivity Set Event

A sensitivity set event displays any change of sensitivity to a detector device that was made manually at a system control panel. The LCD displays:

001-001 1ST FLOOR EAST WING NORMAL 321 12:24:48 Mar 10,1995

Where:

001÷001

The module/device address. The division sign indicates that this is a history log display.

1ST FLOOR EAST WING

The custom message assigned to this input.

321

The history log sequence number.

12:24:48 Mar 10, 20XX

The time that the event was logged.

NORMAL

The sensitivity value sent to the device. The selectable values include:

Hi_3 Hi_2 Hi_1 NORMAL Low_1 Low_2 Low_3

Auto Sensitivity Set Event

A sensitivity set event displays any change of sensitivity to a detector device made by the auto sensitivity adjustment system. The LCD displays:

 DOL:101 1ST FLOOR EAST WING
 2.12 +

 321 12:24:38 Mar 10, 20XX

Where:

001÷001

The module/device address. The division sign indicates that this is a history log display.

1ST FLOOR EAST WING

The custom message assigned to this input.

History Log

321

The history log sequence number.

2.12

Indicates that this is an IEC (Enviro-Link) set sensitivity event. The detector sensitivity has been set to 2.12 volts. (The voltage can range from 0-5 volts.) This field may contain the word CLEAN to indicate that this detector was cleaned and restored to its base sensitivity.

÷

This symbol represents the type of automatic correction that was made. A plus sign (+) indicates that the sensitivity was increased, a minus sign (-) indicates that the sensitivity was decreased.

12:24:48 Mar 10, 20XX

The time that the event was logged.

Logic Sensitivity Set Event

A sensitivity set event displays any change of sensitivity to a device made by output logic. The LCD displays:

FNOO12÷ Sensitivity set by logic 321 12:24:48 Mar 10,20XX NORMAL

Where:

FN0012÷

The label of the logical function that generated this sensitivity set. The division sign indicates that this is a history log display.

SENSITIVITY SET BY LOGIC

The message describing this as a logic sensitivity set event.

321

The history log sequence number.

12:24:48 Mar 10, 20XX

The time that the event was logged.

NORMAL

The sensitivity value sent to the device.

Hi_3 Hi_2 Hi_1 NORMAL Low_1 Low_2 Low_3

History Print Formats At The MXL-IQ Panel

The history printout format available at the MXL-IQ control panel appears in the same format as all other listing type reports. The listing output is in the higher character density mode of the output device. The vertical pitch varies to clearly distinguish one event from another. If the target printer has variable point spacing, each event is separated by a 0.5 line gap. On printers without variable point spacing, there is one full blank line between events.

To interrupt the listing operation at any time, press the CLEAR key. Significant system activities, such as alarms, troubles, etc., automatically terminate the listing. The printout always indicates when the listing has been prematurely terminated.

(Refer to the History Log Sample Printout on the following page)

The basic format of the history printout is:

<Listing Date>

<Listing Conditions>

- <Event Type [Modifier]>
- <Event Locator>
- <Event Time>
- <Event Sequence #>
- <Event Description>
- - (repeated for each event having matching conditions)

.

<Listing Terminator>

Where:

Listing Date

Identifies the report type (in this case the history log) and the date that the report was generated.

Listing Conditions

Shows the filter and starting date for this report.

History Log Sample Printout

1	± 0		30 40		50 60	70	80
Line 1 Line 2	Listing of History This is a FULL list	-	-	1 2088.			
DING 2		beginning at	09.20.02 Mai 0	1,2077.			
Line 3	SENS NORM. FN0012	06:00:00	Mar 02,20XX	#1	Sensitivity set by	output logi	. C
Line 4	SENS Hi_1 FN0013	19:00:00	Mar 02,20XX	#2	Sensitivity set by	output logi	. C
Line 5	TROUBLE IN 1-1	22:10:11	Mar 02,20XX	#3	UTILITY CABINET, I	nput Dev.	
Line 6	Response Too Low	, TRI-2R Switc	eh Input + Rela	У			
Line 7	ACK. TRBL. 251	22:15:24	Mar 02,20XX	#4	Troubles Block Ack	nowledged	
Line 8	MAN. RST. 251	22:50:03	Mar 02,20XX	#5	Manual Panel Reset		
Line 9	SENS NORM. FN0012	06:00:00	Mar 03,20XX	#6	Sensitivity set by	output logi	. C
Line 10	SENS Hi_1 FN0013	19:00:00	Mar 03,20XX	#7	Sensitivity set by	output logi	. C
Line 11	VERIFY 2-11	21:39:00	Mar 03,20XX	#8	ROOM 101 FIRST FLC	OR, ID-60I	
Line 12	Ionization Detec	etor					
Line 13	SENS NORM. FN0012	06:00:00	Mar 04,20XX	#9	Sensitivity set by	logic	
Line 14	VERIFY 12-23	10:42:20	Mar 04,20XX	#10	ROOM 221 SECOND FL	00R. ID-60I	
Line 15	Ionization Detec					,	
Line 16	ALARM IN 12-23		Mar 04,20XX	#11	ROOM 221 SECOND FL	00R, ID-60I	
Line 17	Ionization Detec	etor					
Line 18	OUTPUT ON FN0103	10:43:13	Mar 04,20XX	#12	Output logic opera	tion	
Line 19	OUTPUT ON FN0010	10:43:13	Mar 04,20XX	#13	Output logic opera	tion	
Line 20	ACK. ALARM 251	10:45:21	Mar 04,20XX	#14	Alarms Block Ackno	wledged	
Line 21	SILENCE 251	10:45:22	Mar 04,20XX	#15	Audibles silenced		
Lino 22	MAN. RST. 251	10.45.25	Man Ol 20VV	#16	Manual Danal Dagat		
Line 22	MAN, RSI, 201	10:45:25	Mar 04,20XX	#16	Manual Panel Reset		
Line 23	LOGIN 2 251	10:50:53	Mar 04,20XX	#17	Operator Login to	Level 2	
Line 24	DISARM 12-23	10:51:23	Mar 04,20XX	#18	ROOM 221 SECOND FL	00R, ID-60I	
Line 25	Ionization Detec						
Line 26	DISARM 7-2	10:52:04	Mar 04,20XX	#19	FAN #1, CRM-4 Rela	y Output	
Line 27	ENERGIZE 7-2	10:52:24	Mar 04,20XX	#20	FAN #1, CRM-4 Rela	y Output	
Line 28	SENS HIGH FN0013	19:00:00	Mar 04,20XX	#21	Sensitivity set by	logic	

History Log

Event Type	be of history event that is	SECU	RTY	Security causing device	
being reported.	The following event types groups. The modifier fields	SUPER	RVS	Supervisory causing device event	
<u>Group 1 types:</u> ACK. ALARM	Alarm block acknowledge	<u>Group</u> SENS	<u>3 types:</u>	Sensitivity set	
ACK. TRBL.	Trouble block acknowledge	<u>Group</u> LOGIN	<u>4 types:</u>	Operator login	
ACK. SEC.	Security block acknowl- edge	Group OUTPl	5 types: JT	Output logic event	
ACK. SUP.	Supervisory block acknowl- edge	Modifi The mo		an optional field that	
MAN. RST.	Manual reset via MKB-4	extends the meaning of the event type. For example, ALARM IN, where IN explains the ALARM type.			
COLD RST.	Hard reset from power off	Group	1 type:		
WARM RST.	Hard reset via reset jumper			r this group	
WDOG RST.	Hard reset via 6805 watchdog	IN OUT ACK	Conditi	on now active on now inactive on now acknowledged	
VERIFY	Alarm verify		<u>3 types:</u>	on now acknowledged	
ENERGIZE	Energize an output		Hi_3 Hi_2		
DE-ENERGIZE	De-energize an output		Hi_1 NORM/	AL	
ARM	Arm a device		Low_1 Low_2	-	
DIS-ARM	Disarm a device		Low_2 Low_3		
SILENCE	Silence audibles	Group	<u>4 types:</u> 0	Lowest access	
UNSILENCE	Unsilence audibles		1 2	2011001 000000	
CONFIG.	(CSG-M) Configuration changed	Group	3 <u>5 types:</u>	Highest access	
Group 2 types:	changed	ON		on now active	
ALARM	Alarm causing device event	OFF	Conditio	on now inactive	
TROUBLE	Trouble causing device event		Locator Id locate	s the source or destination	

of the event as either a module number, module-device pair, or function name.

Event Time

The time and date of this event.

Event Sequence

The sequence number of this event in the history log list. The maximum value of this number depends on the type of logging selected and the length of time since the last download.

Event Description

The event description is either the custom message associated with a device, or for non-devices, it is a descriptive message.

MXL-IQTo CSG-M Download Formats

Download from the MXL-IQ history log to the CSG-M history support feature occurs while the MXL-IQ maintains all normal operations. There are two ways to access history log events:

1. **Non-destructive mode**—information can be examined only.

2. **Destructive mode**—information can be extracted from the MXL-IQ and incorporated into a data base (See Screen 4). If the information is extracted from the MXL-IQ, the history is erased from the system, and the system is reset. Access to the destructive mode is password and vendor ID protected.

The history contents and organization of the CSG-M configuration change over the lifetime of the system. As a result, the history extraction process must download both the encoded history log and its configuration in the CSG-M. At the conclusion of the extraction process, an .IMH file is created which contains fixed data that is common to all history extractions from a given CSG. This technique has the advantage of eliminating the need for a complex code in the MXL-IQ to reorganize the data, shifting that burden to programs in the PC environment which are more easily modified. However, this technique requires time to perform the download.

Each access of the history, whether in the examine or extract mode, requires the transmission of the entire CSG-M configuration from the MXL-IQ to the PC host. For very large configurations, this could take many minutes for the first download after a

Fire Protection Company Name
CSG-M Memory=2900 used, 316848 free CONFIG => TEST1 Transfer a System to or from an MXL-IQ Panel
SEND System Configuration TO MXL-IQ Panel READ System Configuration FROM MXL-IQ Panel VERIFY System Configuration in MXL-IQ Panel DISPLAY MXL-IQ Panel Info EXTRACT MXL-IQ Panel History
Move Cursor to Highlight Selection, then ENTER ESC=Prev. Menu

History Log

configuration is changed. If the .IMH file is present after the first download of a configuration, the operation will run more quickly on subsequent downloads.

History Download Sequence

The download process uses the existing capabilities of the CSG-M programming system. The sequence for extracting history log events is as follows:

- 1. PC contacts the MXL-IQ and requests the configuration header and data area pointers.
- 2. If the PC determines that there is history data present, then the extraction process begins.
- The PC computes the required amount of storage and determines if the media in the PC has enough room for it. If there is sufficient room, the process continues; if

not, the user is prompted to change disks.

- 4. The PC creates a raw data file that contains an identifying header.
- 5. The PC downloads the compressed history log data and appends it to the file.
- 6. The PC downloads the configuration data and appends it to the file.
- 7. The resulting file is closed and then tested for integrity. Any irregularity in this validation ends the extraction process and signals the user.
- 8. *If this is a non-destructive download,* then the process is complete.

If this is a destructive download, then the clearing of the history log in the MXL-IQ begins. A warm reset occurs in the MXL-IQ at the end of the extraction process.

Compatible Devices

TABLE 1 CONVENTIONAL DEVICES

Detector	Base	Installation Instructions	Compatil	ble With
DI-3/3H DI-A3/A3H	DB-3S	315-081943	CZM-1B6 ^{1,6}	CZM-4 ⁴
DI-B3/B3H	AD-3I/ILP AD-3RI/3RP	315-093234 315-086591	CZM-1B6 ^{1,6}	CZM-4 ⁴
DT-11 ⁵	DB-11 DB-3S + DB- ADPT	315-095429	CZM-1B6 ^{1,6}	CZM-4 ⁴
PBA-1191 5,7	PBB-1191	315-095424		CZM-4
PE-3/3T	DB-3S AD-3ILP AD-3RP	315-090875 315-093234 315-086591	CZM-1B6 ^{1,6}	CZM-4 ⁴
PE-11/PE-11T	DB-11 DB-3S + DB-ADPT AD-11P/11PR	315-094198 315-094198 315-095659	CZM-1B6 ^{1,6}	CZM-4 ⁴
FM Approved Only				
DI-3IS + ISI-1	DB-3S	315-081943	CZM-1B6 2,6	—
S121/S122 + ISI-1	_	315-085258	CZM-1B6 ³	—

TABLE 2 ANALOG ADDRESSABLE DEVICES

Device	Base	Installation Instructions
CZM-1B6	_	315-095355
FP-11/FPT-11 ⁸	DB-11, DB-X11RS DB-3S + DB-ADPT DB-X3RS + DB-ADPT ADBI-60 + DB-ADPT	315-095921
FP-11 (d) ^{8, 10}	AD-11P/11XPR	315-095659
ICP-B6	_	315-095306
ID-601/601H ID-601A/601AH	DB-3S, DB-X3RS	315-090287
ID-60IB/601BH	AD-3I AD-3XRI	315-093234 315-093235
ILI-1/1H ILI-1A/1AH	DB-3S, DB-X3RS	315-095387
ILI-1B/1BH	AD-3I AD-3XRI	315-093234 315-093235
ILP-1/ILPT-1	DB-3S, DB-X3RS	315-092594
ILPT-1(d)	AD-3ILP AD-3XRILP	315-093234 315-093235
ILP-2 °	DB-3S, DB-X3RS	315-095028
ILP-2(d) ^{9, 10}	AD-3ILP AD-3XRILP	315-093234 315-093235
ILT-1	DB-3S	315-093336
MSI-10/20	_	315-090903
MSI-10B/20B	_	315-093329
MSI-B6F	_	315-095302
MSI-MB6	_	315-093613
TRI-B6/B6D/B6R	_	315-093315
TRI-MMS	_	315-699547
TRI-MTD	—	315-699548
TRI-B6M	_	315-094547
TRI-S/D/R		315-049485 315-096242 315-049481

- 1. May use up to 15 detectors of any type.
- May use up to 10 DI-3IS ionization detectors in addition to mechanical (non-energy storing) shorting devices.
- 3. May use up to five S121 or S122 flame detectors in addition to mechanical (non-energy storing) shorting devices.
- 4. May use up to 30 detectors of any type, except PB-1191.
- 5. Do not use with alarm verification.
- 6. Do not use detector operated accessories with CZM-1B6.
- 7. Only one PB-1191, and no additional device, can be connected to a CZM-4 initiating zone.
- 8. The FP-11 is only compatible with MXL-IQ Rev. 6.0 or greater firmware.
- 9. Must use MXL-IQ Rev 3.0 or greater firmware.
- 10. When the CSG-M is configured, the DUCT application must be selected when the device is used in an air duct housing or in a spot duct application.

Appendix A

Device Analog Voltages

				LOW3	5.2
				LOW2	5.1
			ID-60I/60IH	LOW1	5.0
			ID-60IA/60IAH	NORM	4.8
			ID-60IB/601BH	HI-1	4.7
				HI-2	4.6
Device	Input State	Voltage		HI-3	4.5
	•	Response		LOW3	5.2
	Normal	0.50-4.19		LOW2	5.1
CZM-1B6	Alarm	4.20-5.00	ILI-1/1H	LOW1	5.0
	Trouble	0.00-0.47	ILI-1A/1AH	NORM	4.8
	Normal	1.80-3.00	ILI-1B/1BH	HI-1	4.7
ID-60T-135	Alarm	3.10-5.00		HI-2	4.6
ILT-1	Trouble	0.00-1.79		HI-3	4.5
				LOW3	5.1
	Normal	1.80-3.00		LOW2	5.0
MSI-10/20	Alarm	3.10-5.00		LOW1	4.8
	Trouble	0.00-1.79	ID-60P	NORM	4.7
	Normal	1.80-3.00		HI-1	4.6
MSI-10B/20B	Alarm	3.10-5.00		HI-2	4.5
	Trouble	0.00-1.79		HI-3	4.3
	Normal	1.80-3.00		LOW3	5.1
MSI-MB6	Alarm	3.10-5.00		LOW2	5.0
	Trouble	0.00-1.79	ILP-1/ILPT-1	LOW1	4.8
			ILPT-1(d)	NORM	4.7
MSI-B6F	Normal Alarm	1.80-3.00	121 1 1(4)	HI-1	4.6
IVI3I-DOF	Trouble	3.10-5.00		HI-2	4.5
		0.00-1.79		HI-3	4.3
	Normal	1.80-3.00		LOW3	5.1
MS-MI	Alarm	3.10-5.00	ILP-2	LOW2	5.0
	Trouble	0.00-1.79	(In Default/No	LOW1	4.8
TRI-60/60D/60R	Not Available	Not Available	Application	NORM	4.7
TRI-B6/B6D/B6R	Not Available	Not Available	Mode Only)	HI-1	4.6
			HI		4.5
TRI-B6M	Not Available	Not Available		HI-3	4.3

		DETECTOR VOLTAGE RESPONSE			
Detector	Sensitivity	Alarm	Dust Threshold	Supervisory	Trouble
	LOW3	5.25-10.00	4.25-5.12	0.63-4.12	0.00-0.50
	LOW2	5.12-10.00	4.12-5.00	0.63-4.00	0.00-0.50
ID-60I/60IH	LOW1	5.00-10.00	4.00-4.88	0.63-3.88	0.00-0.50
D-60IA/60IAH	NORM	4.88-10.00	3.88-4.75	0.63-3.75	0.00-0.50
D-60IB/601BH	HI-1	4.75-10.00	3.75-4.63	0.63-3.63	0.00-0.50
	HI-2	4.63-10.00	3.63-4.50	0.63-3.50	0.00-0.50
	HI-3	4.50-10.00	3.50-4.38	0.63-3.38	0.00-0.50
	LOW3	5.25-10.00	4.25-5.12	0.63-4.12	0.00-0.50
	LOW2	5.12-10.00	4.12-5.00	0.63-4.00	0.00-0.50
ILI-1/1H	LOW1	5.00-10.00	4.00-4.88	0.63-3.88	0.00-0.50
ILI-1A/1AH	NORM	4.88-10.00	3.88-4.75	0.63-3.75	0.00-0.50
ILI-1B/1BH	HI-1	4.75-10.00	3.75-4.63	0.63-3.63	0.00-0.50
	HI-2	4.63-10.00	3.63-4.50	0.63-3.50	0.00-0.50
	HI-3	4.50-10.00	3.50-4.38	0.63-3.38	0.00-0.50
	LOW3	5.12-10.00	4.12-5.00	0.88-4.00	0.00-0.75
	LOW2	5.00-10.00	4.00-4.88	0.88-3.88	0.00-0.75
	LOW1	4.88-10.00	3.88-4.75	0.88-3.75	0.00-0.75
ID-60P	NORM	4.75-10.00	3.75-4.63	0.88-3.63	0.00-0.75
	HI-1	4.63-10.00	3.63-4.50	0.88-3.50	0.00-0.75
	HI-2	4.50-10.00	3.50-4.38	0.88-3.38	0.00-0.75
	HI-3	4.38-10.00	3.88-4.25	0.88-3.25	0.00-0.75
	LOW3	5.12-10.00	4.12-5.00	0.88-4.00	0.00-0.75
	LOW2	5.00-10.00	4.00-4.88	0.88-3.88	0.00-0.75
	LOW1	4.88-10.00	3.88-4.75	0.88-3.75	0.00-0.75
ILP-1/ILPT-1 ILPT-1(d)	NORM	4.75-10.00	3.75-4.63	0.88-3.63	0.00-0.75
1LF 1-1(a)	HI-1	4.63-10.00	3.63-4.50	0.88-3.50	0.00-0.75
	HI-2	4.50-10.00	3.50-4.38	0.88-3.38	0.00-0.75
	HI-3	4.38-10.00	3.88-4.25	0.88-3.25	0.00-0.75
	LOW3	5.12-10.00	4.12-5.00	0.88-4.00	0.00-0.75
	LOW2	5.00-10.00	4.00-4.88	0.88-3.88	0.00-0.75
ILP-2 In Default/No Application Mode Only)	LOW1	4.88-10.00	3.88-4.75	0.88-3.75	0.00-0.75
	NORM	4.75-10.00	3.75-4.63	0.88-3.63	0.00-0.75
	HI-1	4.63-10.00	3.63-4.50	0.88-3.50	0.00-0.75
	HI-2	4.50-10.00	3.50-4.38	0.88-3.38	0.00-0.75
	HI-3	4.38-10.00	3.88-4.25	0.88-3.25	0.00-0.75

Appendix B

MXL-IQ Battery Calculations

Battery backup is a requirement for the MXL-IQ. To determine the size battery you must use, follow the procedures listed below. The MXL-IQ can charge a battery of up to 55 amp hours. A battery size calculation form is also provided.

- 1. Record all the modules required in the form on the following page.
- 2. Calculate each row across and place the total in the right column: **Total Standby 24 VDC Module Current**
- 3. Total the right-hand column and record it at the bottom of the form opposite **Total System Current.**
- 4. For NFPA 72 Local, 72 Proprietary, and UL 1076 systems multiply the total system current by 24 and record it at that Total AH location.

or

For NFPA 72 Municipal Tie and 72 Remote Station systems multiply the total system current by 60 and record it at that Total AH location.

or

For **FM Approved Deluge/PreAction systems** multiply the total system current by 90 and record it at that **Total AH location**. 5. Multiply the AH Total by 1.3 to obtain the final battery amp hour capacity and record it opposite **Battery Size.**

Three battery models are UL listed for use with the MXL-IQ:

- BP-61—24V, 15 AH
- BTX-1-a set of 12V, 31 AH
- BTX-2—a set of 12V, 55 AH, 65 AH, or 75 AH*

*Although larger batteries may be used, as noted, the 55 AH capacity must be used for determining battery requirements.

Select the battery that meets or exceeds the final calculated battery amp hour rating. Use an external battery box with the BTX-2 model.

Appendix C

NOTES

The following modules draw no 24 VDC current and do not need to be included in the battery calculations:

MOM-2 MOM-4 TSW-2

 Use this column for battery size calculations.
 Power is supplied by a

2. Power is supplied by a separate UPS.

3. EOL currents included.

	Standby 24 VI	Standby 24 VDC	Load Current Per Circuit			
Module	Quantity	Module Current (See Note 1)	End of Line Device	Device Current	Total Standby 24 VDC Module Current	
		176mA				
SMB-2			12mA per NAC			
				1.1mA per device/ 1.6mA per TRI		
MKB-4		6mA	0	0		
MKB-6		300mA	0	0		
PIM-1		15mA	0	0		
PIM-2		(See Note 2)	0	0		
PAL-1		(See Note 2)	0	0		
5120/5129		30 mA	0	0		
		120mA				
ALD-2I			0	1.1mA per device/ 1.6mA per TRI		
CCU/M		150mA	0	0		
CMI-300		30mA	0	0		
CPY-HLI		90mA	0	0		
		5mA	-	-		
CRM-4				18mA/active relay		
		11mA				
CSM-4			12mA	0		
		38mA				
CZM-4 0 3mA						
D2300CP		50mA	0	0		
DCT-1/-1E	0CT-1/-1E 150mA 0 0					
MDACT	DACT 220mA 0 0					
MID-16	6 2mA 0 0					
MOD-16		2mA	0	0		
MOI-7		20mA	0	0		
NIM-1W		60mA	0	0		
NIM-1W + NIM-1M		130mA	0	0		
PS-5A		10mA + ¼ of 5V load	0	0		
RCC-1/1F/-2		55mA + 15mA if PIM-1 is used	0	0		
RCC-3		300mA	0	0		
TSP-40		70mA	0	0		
		6mA				
CZM-1B6			5mA			
1.5mA						
ICP-B6	ICP-B6 10mA 2.5mA 0					
Total System Current						
Engine Driven Generator - Total AH x 4 =						
NF		2A), Proprietary (72D), I				
	NF	PA Municipal Tie (72B),	Remote Station (72	C) - Total AH x 60 =	*	
		FM Appro	ved Deluge/PreActi	on - Total AH x 90 =	*	

FM Approved Deluge/PreAction - Total AH x 90 =

Battery Size (with Alarm Reserve Correction)** x 1.3 =

* Total not to exceed 42 Amps

** Maximum Alarm current 12 Amps

MXL-IQ Power Supply Load Calculations

Each MXL-IQ System enclosure requires an SMB-2. To ensure that the power supply is not overloaded, complete the worksheet on the following page.

- Enter the quantity of each module in the enclosure.
- Calculate both the 24V and 5V loads for each row.
- Total the Active 24V and Active 5V columns.
- Ensure that both totals are within the power supply output ratings in the table to the right.

POWER SUPPLY OUTPUT RATINGS

Module	Active 24 VDC Module Current	Active 5 VDC Module Current	
SMB-2/MPS-6	6 amps	500mA	
SMB-2/MPS-12	12 amps	500mA	

The following modules draw no current from either the 5 VDC or 24 VDC power supplies and do not need to be included in these calculations: MOM-2

> MOM-4 PAL-1 PIM-2 TSW-2

Module	Quantity	30VDC Unfiltered Full Wave Rectified Module Current	Total Active 24 VDC Module Current (See Note 1)	Active 5 VDC Module Current	Total Active 5 VDC Module Current (See Note 2)
SMB-2		295mA + 1.1mA/device, 1.6mA/TRI (See Note 3)		(See Note 3)	0
MKB-4		0	0	75mA	
MKB-6		300mA		0	0
PIM-1		0	0	50mA	
5128/5129		40mA		0	0
ALD-2I		120mA + 1.1mA/device, 1.6mA per TRI		0	0
CCU/M		150mA		0	0
CMI-300		0	0	96mA	
CPY-HLI		90mA		0	0
CRM-4		18mA per active relay		10mA	
CSM-4		70mA + 1.5A max/circuit		10mA	
CZM-4		765mA (4 zones in alarm)		10mA	
D2300CP		0	0	200mA	
DCT-1/-1E		190mA		0	0
MDACT		260mA		0	0
MID-16		48mA max		2mA	
MOD-16		800mA max		2mA	
M0I-7		0	0	70mA	
NIM-1W		60mA		0	0
NIM-1W + NIM-1M		130mA		0	0
PS-5A		10mA + ¼ of 5V Load		0	0
RCC-1/1F/-2		65mA + 15mA if PIM-1 is used		0	0
RCC-3		300mA		0	0
TSP-40		70mA		0	0
CZM-1B6		50mA		0	0
ICP-B6		10mA + device load (1.5A max.)		0	0
		TOTAL		TOTAL	

- 1. Use this column to calculate total current from 24 VDC supply to make sure it is not overloaded.
- 2. Use this column to calculate total current from 5 VDC supply to make sure it is not overloaded.
- SMB-2 supplies 5V at 500mA, 24V at 6A (MPS-6), 24V at 12A (MPS-12).

Alarm Verification

The Alarm Verification feature provides the MXL-IQ with a way to verify an alarm from area type addressable smoke detectors connected to the analog loops or from standard smoke detectors connected to the CZM-4 module. This feature reduces the incidence of false alarms.

When a detector is supervised with Alarm Verification, it is turned off immediately after the System first detects alarm causing data from it.

The length of time that the detector is verified is fixed at 50 seconds. In MXL-IQ, an addressable detector is "turned off" by the System ignoring its data; a standard detector is turned off by the power actually being removed from the detector. After the

turnoff period, the panel puts that detector into alarm if it has alarm causing data within 60 seconds of being turned back on. See the figure below for a graphic illustration of Alarm Verification

You can select Alarm Verification for none, all, or any combination of addresssable smoke detectors.

MXL-IQ supports a global verification feature called Device Confirmation. It provides adjustable A⇔B verification times for all addressable:

- Ionization detectors
- Photo detectors
- · Ionization and photo detectors

A		B	c which are subjected to velocities of less than 1 feet per minute with Al
		Time⇔	Verification. Under dyn air velocity conditions, may be swept from a s detector after the initia alarm. That may cause
	А	Time at which the System initially recognizes an alarm from a smoke detector.	a long delay before
	A⇔B	The 50 seconds during which the System ignores the alarm data	verification. Do not sel Alarm Verification for
	B⇔C	The 60 seconds during which the System alarms if the device is returning alarm data	applications.

CAUTION

Use only detectors to air n 100 Alarm /namic s, smoke smoke ial se elect or such applications.

Line Graph of Alarm Verification

Appendix E

With Device Confirmation, the B⇔C verification time known as System Justified Alarm time is also adjustable. It is the same time used by both ionization and photo detectors. If a device is individually selected for alarm verification, the alarm verification feature takes priority over the device confirmation option. For adjustment ranges, refer to the **CSG-M Programming Manual**, P/N 315-090381. There is an Override menu selection in the Test menu of MXL-IQ. Select *Alr_Verify* to disable all alarm verification or select *Alr_Confirm* to disable all alarm confirmation for a period of up to 4 hours or until manually re-enabled.

Envirolink

INTELLIGENT ENVIRONMENTAL COMPENSATION (IEC)

Envirolink is an optional feature that permits MXL-IQ to compensate automatically for environmental changes (such as dirt and dust buildup) in the analog voltage of an I Series photo or ion smoke detector. The selection of Envirolink devices is made in the CSG-M.


Once a detector is chosen to be covered by Envirolink, MXL-IQ stores and analyzes the analog readings of the smoke detector and adjusts the detector's threshold upward or downward, as necessary, to maintain a constant sensitivity.

As the analog voltage increases due to environmental factors, an equivalent increase in the detector's alarm threshold prevents factors other than smoke from causing an alarm. This method maintains the selected detector's sensitivity.

Typically, the analog voltage changes slowly over long periods of time for environmental factors, but changes quickly over short periods of time for actual smoke.

Initial System Power-Up

When a new or modified CSG-M is loaded into a system, the MXL-IQ control panel goes through an initial system power-up. The MXL-IQ does **not** keep the Envirolink option where it was formerly applied when this new system powers up. The Envirolink memory re-initializes, and then MXL-IQ begins adjusting the alarm thresholds wherever Envirolink is selected in the new CSG-M.

Adjusting the Alarm Threshold When a New CSG-M is Uploaded

After MXL-IQ checks that the actual ID of a device with Envirolink agrees with the CSG-M, it adjusts the detector's alarm threshold according to the data stored. The first adjustment occurs after 100 hours of data accumulation. In the case of power cycling or resetting, adjustments begin within 90 seconds.

Appendix F

If a detector with Envirolink (IEC) reports an alarm condition before the detector's alarm threshold is adjusted, the alarm delays until the alarm threshold is adjusted. If the device continues to report an alarm condition once its alarm threshold is adjusted, the alarm reports.

If the CSG-M and the device ID do not agree, the IEC for that device does not activate until the trouble condition is removed from the system and the panel is reset.

MXL-IQ Power On

When a system is brought on-line, or when there is a complete loss of power in an MXL-IQ enclosure containing detectors with IEC applied, the operator must perform a reset sequence for the IEC devices in that MXL-IQ and also reset the MXL-IQ.

When an MXL-IQ is powered the first time, and there is no data for IEC devices, MXL-IQ leaves these devices at the default alarm threshold. However, if former IEC data is available, MXL-IQ adjusts the device alarm threshold accordingly.

Ongoing Adjustments of the Alarm Threshold

Environmental conditions usually cause a small change in the analog voltage over a long period of time. At regular intervals MXL-IQ collects analog data for each detector with IEC and adjusts the alarm threshold accordingly. MXL-IQ adjusts for both up and down changes in the analog voltage. In addition, if system power is lost, MXL-IQ adjusts the alarm thresholds as needed by using stored data.

Indicating IEC Trouble Conditions

A trouble condition involving the IEC may be annunciated by the MXL-IQ as:

PRE-DIRTY	ANALOG	VOLT.	REACHE⊅
	C	R	
IEC LIMIT	REACHED.	SERVIC	E REQ

The trouble conditions shown above are annunciated on a detector-by-detector basis as each detector is checked.

MXL-IQ annunciates a trouble condition for a detector when its alarm threshold reaches a predetermined limit. The operator should acknowledge the trouble, clean the detector if possible, and reset the control panel. If the detector is not cleaned, the control panel annunciates this trouble condition after every panel reset until the detector is cleaned. When it is cleaned, that is detected by the Auto Clean Detection feature.

Automatic Cleanliness Detection

MXL-IQ automatically detects when an IEC detector was cleaned and checks whether the detector is considered clean by MXL-IQ's standards. If the detector is clean, IEC data for that device is reset to clean levels, and the following message prints:

Detector Cleaned

NOTE: Automatic detection and documentation of the cleaning of a detector by MXL-IQ may take as long as 1 hour. To avoid this, use the **Det cleaned** option in the Test menu to avoid automatic clean detection. When you enter the address of the detector that was cleaned, MXL-IQ adjusts that detector's Norm sensitivity setting reference.

Detector Cleaned

IEC must be enabled in the CSG-M in order to have access to the **Det_cleaned** option through the MXL-IQ Annunciator Panel.

At the Test menu, use the Left or Right arrow key to cause the **D** in **Det_cleaned** to start blinking:

TEST: OVERRIDE DET_CLEANED

Press **ENTER** when the **D** is blinking to select **Det_cleaned.**

The System asks you to type the module and device numbers.

- Type the three-digit module number and the three-digit device number (mmm/ddd), including all leading zeroes.
- Press ENTER.

After entering the module-device, MXL-IQ checks whether the device is subject to IEC. If the device is not subject to IEC, or if IEC is not enabled for the system, an error messages displays:

DEVICE N	IOT SUBJECT	TO IEC
IEC NOT	ENABLED IN	CSG-M

If the device is an IEC detector, MXL-IQ displays and prints the time, date, device, and custom message of the cleaned device.

Appendix F

Latching/Non-Latching Troubles

This feature is not available for Networked MXL-IQ Systems.

When the Latching/Non-Latching (self restoring) trouble option is set to **YES** in the CSG-M, MXL-IQ automatically removes trouble conditions from the trouble queue when the **OUT OF TROUBLE** condition is detected.

For NFPA 72 Local, 72 Municipal Tie, and 72 Remote Station systems, the following criteria must be met in order for the trouble to be removed from the trouble queue:

- Module and device numbers
 must be identical
- Trouble type must be identical
- Both IN/OUT conditions must be recorded in the queue
- All printers being used must print both IN/OUT conditions

When all these conditions are met, the MXL-IQ removes both the in and out occurrence of this trouble from the queue. If there are no other events in the system (alarm, supervisory, trouble, or security), MXL-IQ returns to the **SYSTEM NORMAL** display (without a system reset). If there are other events in the system, MXL-IQ updates the display.

For NFPA 72 Proprietary systems, the following criteria must be met if the trouble is to be removed from the trouble queue:

- Module and device numbers
 must be identical
- Trouble type must be identical
- Both IN/OUT conditions must be recorded in the queue
- All printers being used must print both IN/OUT conditions
- Both IN and OUT conditions must be acknowledged and printed

When all these conditions are met, MXL-IQ removes both the in and out occurrence of this trouble from the queue. If there are no other events in the system (alarm, supervisory, trouble, or security), MXL-IQ returns to the **SYSTEM NORMAL** display. If there are other events in the system, MXL-IQ updates the display.

Not all troubles can be removed from the trouble queue. If there is no **OUT** condition reported (i.e., **Class A loop trouble**), MXL-IQ requires an acknowledgement and reset.

Appendix G

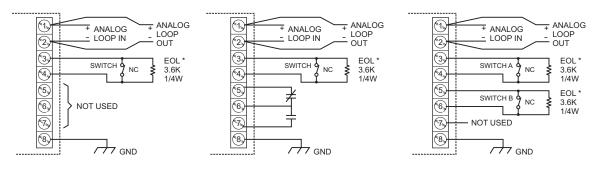
Installing A Security Point

WARNING: These circuits are intended for 24 hour alarm monitoring only.

UL 1076 requires a TSW-2 tamper switch as well as a supervised printer (PAL-1/PAL-2). Other supervised printers that are selectable in CSG-M are the TI-820 and the LA-50.

Only Models TRI-60/-60D/-60R or TRI-B6/-B6D/-B6R may be used as security points. A **COMMUNICATION FAILURE** with a TRI device configured for **SECURITY** results in a **SECURITY ALARM** as well as a communication trouble. When installing a TRI device in the CSG-M, be sure to set the device usage field to security; otherwise, the device usage defaults to fire alarm.

TRI-60 / TRI-B6


CAUTION:

- When setting the device address using the FPI-32, select the normally closed alarm causing input.
- Connect only one switch per TRI input.

For proprietary burglary application (UL 1076):

- Use a TSW-2 tamper switch to monitor the main enclosure.
- Monitor each TRI-60/-60D/-60R or TRI-B6/-B6D/-B6R related to this application for 24 hours by using a listed motion detector (to prevent tampering).

TRI-60D / TRI-B6D

TRI-60R / TRI-B6R

* END OF LINE DEVICE: P/N 140-820185 REFER TO **TRI INSTALLATION INSTRUCTIONS**, P/N 315-092329 OR 315-093315, AS APPLICABLE

Installing the Security Point for UL 1076

Appendix H

Application Specific Detection (**ASD**)

Application Specific Detection (ASD) allows the system designer (and anyone with Control menu access) to program an ILP-2 detector's sensitivity, pre-alarm threshold, and other alarm-related parameters using English descriptions of the detector's environment (application). This eliminates the need for detailed knowledge of smoke detector terminology and operation. The designer can set all of the critical detector parameters by simply selecting an application description that closely fits the one where the detector is to be installed.

For example, to use ASD to select the optimal parameters for a detector in a hotel lobby, select the LOBBY application in the CSG-M for that device. The MXL will automatically transmit the factory determined sensitivity, pre-alarm threshold, and detection algorithm (R-algorithm) to the corresponding device. This eliminates the guesswork of selecting these parameters for different environments. Changes made at the control panel using the Control menu (Change_Apps) override the ASD settings made in CSG-M for that ILP-2 device until the next power-on reset.

NOTES:

- 1. The ILP-2 is only compatible with MXL-IQ Revision 3.0 or greater firmware.
- 2. The FP-11/FPT-11 is only compatible with MXL-IQ Revision 6.0 or greater firmware.
- When the CSG-M is configured, the DUCT application must be selected when the device is used in an air duct housing or in a spot duct application.

ASD SUBMENU ABBREVIATIONS

MXL Menu	CSG-M Application	Description
NONE	Disable	No Applications (Standard Photoelectric Detector)
OFFC	Office (Retail)	Reasonably clean, climate controlled atmosphere
WHSE	Warehouse (Light Manufacturing)	Airborne dust, equipment, fork truck and light to medium dock area exhaust fumes
LOBY	Lobby	Relatively clean area, temperature changes, cellular phones, smoking
СОМР	Computer Room	Very controlled environment, clean, temperature closely regulated, high cost clean machinery operating, no smoking, high air velocity
DORM	Dormitory	Airborne dust and temperature changes, living quarters, cooking fumes, smoking
HLTH	Healthcare	Higher level risk, relatively clean, electronic equipment
PARK	Parking Garage	Airborne dust, car and diesel fumes, temperature swings
UTIL	Utility (Transformer) Room	Normal to somewhat dirty environment, heat from running equipment
PREC	Precious Storage (Sensitive Environment)	Sensitive materials or equipment storage, clean dust-free environment, earliest warning desired
HOST	Hostile Environment	Dirty, dusty, humid, operating equipment, RF present, wide temperature swings
DUCT	Duct (Open air or duct housing)	Dirty, dusty, humid, wide temperature swings, high air velocity

Appendix I

Testing ASD Devices

Since one of the parameters transmitted to the detector adjusts the detection algorithm (R-algorithm) to reduce false alarms, it is necessary to defeat ASD (or at least the R-algorithm) when smoke testing ASD devices. The **Test ASD_Devices** menu option has been supplied for this purpose. When ASD devices are to be smoke tested, the **Test ASD_Devices** option must be enabled. This disables the application specific detection R-algorithm so the detector will alarm using the standard test gas method. If the **Test ASD_Devices** option is not enabled prior to smoking the device, the tester may find it extremely difficult to alarm the detector since the algorithms are designed not to be fooled by a deceptive phenomenon such as test gas.

Once the **Test ASD_Devices** option has been enabled using the test menu, the tester should wait 3 minutes before attempting to test the ASD devices. This time may vary slightly with the number of ALDs and ASD detectors in a system. This will ensure that the ASD R-algorithm has been defeated for test purposes. The system will not reset until the **Test ASD_Devices** option has been disabled.

MXL-IQ Trouble Messages

Trouble Message	The Probable Cause Is:
AC Fail or Brownout	Primary AC power is missing or below the brownout level; the System is running on battery backup.
Airflow Too Low	AnaLASER airflow is below programmed threshold.
Airflow Too High	AnaLASER airflow is above programmed threshold.
AnaLASER Power Trouble	Problem with AnaLASER power supply.
ASD Testing Enabled	Application specific detector testing is enabled. The applications feature is disabled during testing.
Aux Pwr Class A Fail Neg	The negative side of the CZM-1B6 power circuit is open.
Aux Pwr Class A Fail Pos	The positive side of the CZM-1B6 power circuit is open.
Battery Backup Invalid	A battery is connected, but not selected in CSG-M.
Battery Fuse/Wiring Open	Either the battery is not connected, or the battery fuse is blown, or the battery voltage is too low.
Carrier Lost	CMI-300 to CXL communications problem where the CMI-300 does not see the CXL's modem carrier (tone). No data is being transmitted.
Class A Loop Trouble	If Class A: The initiating circuit at this module address has an open. If Class B: Wired zones are missing the Class A jumpers.

Trouble Message	The Probable Cause Is:
CMI-300 General Trouble	Communications trouble between the CMI- 300 and the CXL. Data is attempting to transmit.
CSGM Out Of Date	This MXL-IQ (node) will need to be updated with the latest CSG-M networked program. A network CSG-M has been loaded on another MXL-IQ (node) and has a reference to this MXL-IQ (node).
Daily Detector Test Abnormal	Device is defective.
Detector Trouble	AnaLASER detector in need of repair.
Device Communication Error	An analog device whose response has failed error checking.
Device Detected Waveform Error	An analog device reports this trouble if it receives an unknown polling waveform.
Device LED Turned On	A device LED was turned on from the Test menu of the MXL-IQ.
Device Multiple Response	Two or more analog devices at the same address have reported during normal supervision.
Device Out of Calibration	This message is used with XLD and is the same as the XL-3 message, <i>Response out of window at cal.</i>
Device Receive Error	An analog device reports this trouble if it receives an incorrect analog transmission.
Event log 80% full	Use extract history in CSG-M to reset the MXL-IQ history log.
Event log 90% full	Use extract history in CSG-M to reset the MXL-IQ history log.
Function Recursion Trouble	The number of evaluations of output logic required until outputs are stable has exceeded the system maximum. Rewrite CSG-M to simplify functions.
Ground Fault Minus	Low impedance to the negative side of one of the field wiring circuits to earth ground.

Trouble Message	The Probable Cause Is:
Ground Fault Plus	Low impedance to the positive side of one of the field wiring circuits to earth ground.
High Battery Voltage	Battery voltage is too high because battery has been overcharged. Battery and/or charger are possibly defective.
History Manually Turned Off History Manually Turned On History Manually Erased	History Log has been manually changed (Turned Off / Turned On / Erased) using the MKB.
IEC Limit Reached. Service Req	Detector environmental compensation has reached UL limit. Detector is very dirty and requires cleaning.
IEC/Pre-alarm Memory Error	An unsuccessful attempt was made to access the IEC area of flash memory. Is IEC-1 module present? Is segmented flash present?
Incorrect Device ID	An analog device whose type or usage does not agree with the CSG-M assignment at that address.
Incorrect Node Address	Address on NIM-1W is incorrect.
Input Device Not Responding	A device assigned in CSG-M is not reporting at its address.
Input Dev Response Too Low	Input wiring to TRI or CZM-1B6 modules has an open circuit or no EOL. Loss of power to CZM-1B6 module. Smoke detector chamber defective.
Input Device Requires Service	An ion or photo detector has exceeded the 80% dust threshold.
Input Disarmed	An initiating device was disarmed through the Control menu.
Keyswitch Activated (CANADA)	This is a trouble type for activation of Canadian manual station keyswitch if no alarm is present.
Lamp Supervision Trouble	MID-1 input trouble when used for lamp supervision.

Trouble Message The Probable Cause Is:	
Log FULL, Events Will Be Lost	History Log is full. Use extract history in CSG-M to reset the MXL-IQ history log
Loss of 24V Input Power	A CZM-4 has lost its 24 VDC input.
Low Battery Voltage	Battery voltage readings low; the battery requires recharge/replacement.
Low IEC Voltage, Service Req	Defective device.
Memory Error In RAM Test	An error was detected in RAM memory IC 112 or IC 113.
Memory Error in ROM test	An error was detected in the EPROM IC 111 or IC 110
Memory Upgrade Required	Starting with revision 6.00, the MXL-IQ requires a memory upgrade (RAM) in socket IC113.
Missing Device ID Response	An ALD module has not returned an ID Poll response for any of its detectors or devices. NOTE: This trouble will accompany <i>module not responding</i> for missing ALD modules.
Module Comm Failure	When network communications are interrupted, and then restored, all module addresses affected report this trouble.
Module Not Responding	The module assigned in CSG-M at this address is not responding.
Module RAM Failure	The CRM-4, CSM-4, or CZM-4 at this address has determined that its internal RAM is not operating properly.
Module ROM Failure	The module at this address has a ROM checksum failure.
MOI-1 Local Trouble	This trouble is reported when the TRBL IN input of the MOI-7 is driven high.
MOI-1 Voice System Trouble	This condition is caused by driving the TRBL IN of the MOI-7 high with voice modules configured in CSG-M for this module.

Trouble Message	The Probable Cause Is:
MOI-1 Zone Disarmed	Output of an MOI-7 (MOD-16 or VPM-5) has been disarmed at the MXL.
More Than 60 Alarms	The System alarm queue is full, and more alarms have been received.
More Than 60 Securities	The System security condition queue is full, and more security conditions have been received.
More Than 60 Supervisory	The System supervisory queue is full, and mor supervisories have been received.
More Than 60 Troubles	The System trouble queue is full, and more supervisories have ben received.
Multiple Module Response	Two or more modules respond at the same address.
Multiple Response Analog Poll	Two or more analog devices at the same address have reported during an analog data request.
MXL Network Failure	The MKB/RCC has lost communication with the MNET.
Network CSGM Upload Needed	A function was added to an XNET node and had a reference to another node. This function shall be added to each node it references.
Network Input Disarmed	A point on another XNET node has been disarmed.
Network Loop A Failure	The Style 7 primary (A) RS485 MNET network loop has failed.
Network Loop B Failure	The Style 7 secondary (B) RS485 MNET network loop has failed.
No CSG - Default In Use	No CSG-M custom programming was found in FLASH memory so the system is using the default CSG-M.
Node Disconnected	XNET node was logically disconnected from the NCC.
Node Multiple Response	Two nodes are programmed at the same address.

Trouble Message	The Probable Cause Is:
Node Not Responding	XNET wiring and/or NIM-1W module is defective.
Out of RAM Call Support	The configuration upload is too large.
Out of Tasks Call Support Contact the Siemens Industry, cal Services Department.	
Output Disarmed	Indicates that an output point has been manually disarmed.
PRE 1 Level PRE 2 Level	AnaLASER device has reached its pre-alarm setting.
Pre-alarm	Device has reached its pre-alarm setting.
Pre-dirty Analog Volt. Reached	IEC compensation has reached a level where the detector should be cleaned.
Printer Off Line/Fault A supervised printer is not resp	
Printer Out Of Paper	The printer has run out of paper.
Relay Coil Open	The relay coil at this address is open.
Relay Disarmed	The relay at this address has been dis- armed from the Control menu.
Relay Driver InoperativeThe relay on the CRM-4 or CSM- address does not operate when o manded to energize.	
Relay Supervision Failure The relay at this address has a co	
ROM SW Version Error	Module at the address noted needs an update to latest available software level.
Signal Circuit Disarmed The NAC at this address was disar from the Control panel.	
Signal Circuit Loop Open The NAC at this address has a b or missing EOL device.	
Signal Ckt Loop Shorted	The NAC at this address is shorted, or the EOL device is the wrong value, or the notification appliances are not polarized or are connected backwards.

Trouble Message	The Probable Cause Is:
Signal Mod A/D Convert Fail	The CSM-4 at this address has a failed analog-to-digital converter.
Signal Module Zone Code	Zone code failure on the CSM-4 module.
Software Key Violation	Incorrect Software Key Installed (NCC only).
Stack Fault Call Support	When the message <i>Call Support</i> appears, a four letter Alpha ID will be displayed. This number is necessary when reporting the problem to Siemens Industry, Inc.
Style 4 Network Mode	The Style 4 jumper on a NET-7 is found on a Style 7 system. Move the jumper to the Style 7 position.
Style 7 Network Mode	The Style 7 jumper on a NET-7 is found in the Style 4 mode. Move the Style 7 jumper to the Style 4 position.
System Commissioning Mode	The system has been put in the commis- sioning mode.
System Signal Power Failure	A CSM-4 has lost power to its output circuits.
Tamper Switch	This is a security-type message for the tamper switch on the SMB-2 board when the system is selected for UL 1076 operation.
Too Many ALD-2s	To many ALD-2Is are installed on the system. This is beyond the maximum allowed.
Trouble Causing Input	A device programmed on the system as <i>trouble causing</i> has been activated and has changed state.
Trouble Type Not Defined	Unspecified trouble has been received from this address.
Troubles Summarized	While the system is in the commissioning mode, the modules will display this message in lieu of all the devices on this module.
Unspecified Dev Responding	An analog device has reported at an address not assigned in CSG-M.

Trouble Message	The Probable Cause Is:
Unspecified Mod Responding	A module has reported at an address not assigned in CSG-M.
Unspecified Node Responding	• NIM-1W address on another node is incorrect.
	• The network CSG-M is incorrect.
WALKTEST Activated	The MXL-IQ has been placed in the walk test mode.
Warm Reset	The hardware reset input to the MXL-IQ was used.
Watch Dog Circuit Triggered	The watch dog circuit on the SMB-2 triggered.
Zone Loop Open	Broken wire on CZM-4 circuit.
Zone Loop Shorted	Shorted wire on CZM-4 circuit.
Zone Power Loss	The CZM-4 zone at this address has lost its 24 volt input.

Power Limited Wiring

For power limited wiring refer to the following Installation Instructions:

Module	Installation Instructions
LLM-1	315-093530
MSE-3L	315-095445
PLC-4	315-093312

Appendix K

New Two Stage Alarm

For use in Canada only with MXL-IQ software version 1.0 and higher

Canadian Two Stage Alarm is available with revision 1.0 of MXL-IQ firmware and revision 6.07 of CSG-M. All new installations of Two Stage Alarm should use the new implementation.

The hardware requirements for the Two Stage Alarm are as follows:

- MXL-IQ firmware revision 1.0 or higher
- CSG-M revision 6.07 or higher
- CSM-4s must contain revision 4 or higher

The new Two Stage implementation is designed for flexibility. It allows the system

designer/programmer to define how Two Stage alarm should function.

Selecting Two Stage

A new selection in the CSG-M determines which version of Two Stage Alarm is used in an MXL-IQ. In the *Other System Flags* menu (under the *Options, System Message, Authorizations* menu), a YES/NO option has been added for **New Two Stage Configuration**. This flag determines which implementation of Two Stage alarm is used in the MXL-IQ.

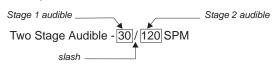
	CSG-M Memory=2864 used, 243212 free CONFIG => TWOSTG Other System Flags
Ľ	Consitivity Adjustments Alloyed
	Sensitivity Adjustments Allowed> NO Block Alarm and Trouble Acknowledge Allowed> YES
	Multienclosure System> NO
	Device disarm through RESET> NO
	Self restoring troubles> NO
	NFPA 71 connection> NO
	NET 7 panel checking> NO
	Network Repeater Used> NO
	Independent Function Keys> NO
	New Two Stage Configuration> YES
М	ove Cursor to Select, ENTER to TOGGLE ESC = Prev. Menu

Appendix L

- Select NO for the old system flag driven version of Two Stage
- Select **YES** for the new control function version of Two Stage

NOTE: When recompiling an older implementation of Two Stage Alarm under CSG-M 6.07 or higher, make certain that the New Two Stage Configuration flag is set to **NO** before compiling and uploading to the MXL-IQ.

Two Stage Signal Circuit Output Definition


The output for all the coded audibles must be defined on a system basis. This is done in CSG-M from the *Options, System Message, Authorizations* menu. The *Zone Coded Audible Format* menu item determines the system's Two Stage audible definition. The following nine selections are provided for Two Stage audibles:

Two Stage Audible - 30/120 SPM
Two Stage Audible - 30 SPM/Steady
Two Stage Audible - 30 SPM/Temporal

- Two Stage Audible Steady/Steady
- Two Stage Audible Steady/120 SPM
- Two Stage Audible Steady/Temporal
- Two Stage Audible Zone Coded/Steady
- Two Stage Audible Zone Coded/120 SPM
- Two Stage Audible Zone Coded/Temporal

Note that each selection contains a slash (/) which separates the Stage 1 audible signal from the Stage 2 audible signal as shown in the following example.

Example:

When zone coding is selected for Stage 1, the system displays the *Zone Coding Characteristics* menu. (See Figure on the next page.) This menu allows the system designer to program the number of rounds, minimum number of rounds, etc. **The final state will always be STEADY no matter what is selected in this menu.**

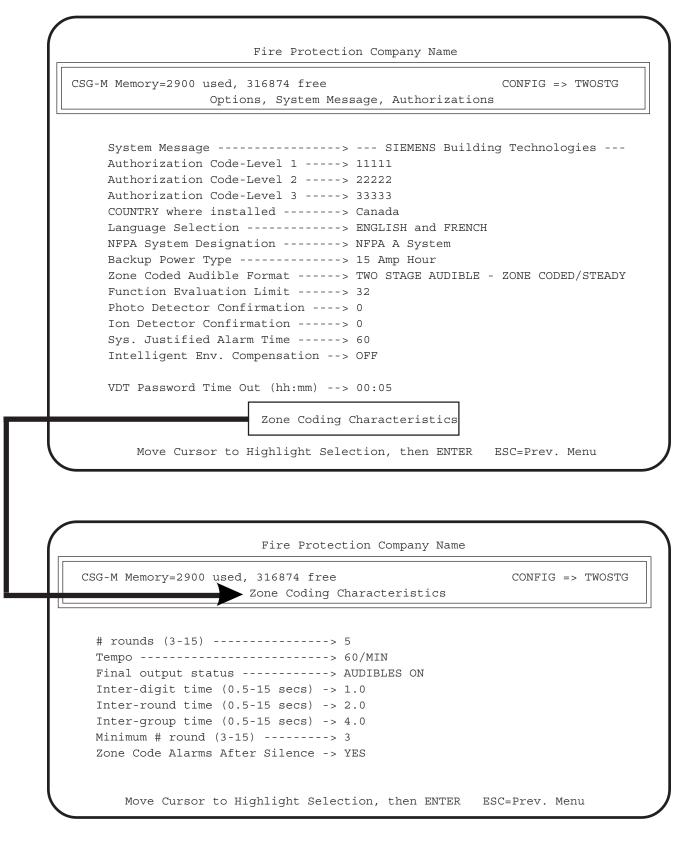
- Zone codes must be entered on a point by point basis.
- Zone codes will be output first by priority, second by queue order.
- In order to have the codes sound in the queue order only, all priorities must be the same.

Two Stage Control Function (CSG-M)

This function has two inputs and an output list.

The inputs are labeled **Stage 1** and **Stage 2**. The inputs may contain the following items:

- · a device address
- function output (logic, timer, etc.)
- system flag reference


The output may only be a list of CSM-4 or main board signal circuits. The signal circuits referenced **must be** zone coded audibles.

The following table describes how the Two Stage Control Function works.

Stage 1 Input	Stage 2 Input	Coded Audibles in Ouput List
False	False	Silent
True	False	Stage 1 Audible Signal For example: 30 SPM, steady or zone coding
False	True	Stage 2 Audible Signal For example: 120 SPM, steady or temporal
True	True	Stage 2 Audible Signal For example: 120 SPM, steady or temporal

TWO STAGE CONTROL FUNCTIONS

Multiple Two Stage control functions may be used in a configuration. A single coded audible may appear on the output list of more than one Two Stage control function. Due to the potential conflict between the functions controlling the same coded output, the following rule applies to the Two Stage control function:

Selecting the Zone Coding Characteristics Menu

Appendix L

When a coded audible appears on the output list of more than one Two Stage control function and there is a conflict (that is, some functions indicate Stage 1 and some functions indicate Stage 2), then Stage 2 has priority over Stage 1. As a result, the coded audibles in question will output Stage 2 (either 120 SPM, steady, or temporal, as selected).

NOTE: When zone coding is selected as the Stage 1 audible output, Stage 2 always has priority over the Stage 1 coding. Once the coded circuit is driven into Stage 2 by logic, all zone codes will stop for that circuit no matter what the minimum rounds are.

Two Stage System Flags

There are two system flags associated with Two Stage alarm: **Reset Inhibit** and **Two Stage Audible State.** Both of these flags are writable with user-designed logic. Refer to the following table for Setting the Two Stage System Flags.

It is important to note that other Two Stage writable flags used in the previous Two Stage implementation are not used in the new Two Stage implementation.

When the Reset Inhibit flag is held:*	Then the Normal Reset (Red MMB key) is:	
True False	Inhibited Not Inhibited	
*The default value of Reset Inhibit is FALSE if the system does not require a Reset Inhibit.		
If the Two Stage Audible State flag is held:**	Then the Normal Audible Silence (Red MKB key) is:	
False True	Inhibited Not Inhibited	
**The default value of Two Stage Audible State is TRUE if the system does not require a Two Stage Audible State Inhibit.		

SETTING THE TWO STAGE SYSTEM FLAGS

Keyswitch Devices

There are two keyswitch types available in the MXL-IQ. All logic associated with a keyswitch device is CSG-M programmable. The only MXL-IQ defined aspects of a keyswitch are as follows:

Keyswitch Type 1

- 1. If a Type 1 keyswitch is activated, an alarm event will result.
- 2. The event will be recorded on the alarm queue and all standard MXL-IQ functions associated with an alarm will occur (that is, the ANY ALARM flag will be set to TRUE, the ANY NEW ALARM flag will pulse, etc.).
- 3. This is true even if there are no previous alarms.

Keyswitch Type 2

- 1. If a Type 2 keyswitch is activated when no alarms are present in the system, it will result in a trouble condition at the MXL-IQ.
- 2. If an alarm is detected while this trouble condition is present on the trouble queue, the active Type 2 keyswitch will be added to the system as an alarm event (added to alarm queue).
- 3. If the keyswitch is activated when an alarm is present in the system, the keyswitch will be treated as an alarm.

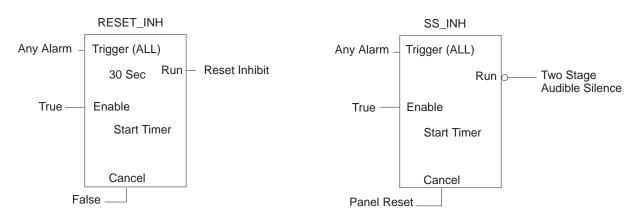
All other system behavior is determined by output logic design.

Sample Two Stage Systems

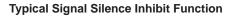
Using Reset Inhibit with Timer

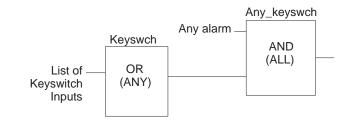
The figure on page L-5 shows methods of implementing Reset Inhibit with a timer, creating an ANY KEYSWITCH function/flag and a timer based signal silence inhibit function.

Keep in mind that your implementation of these features may vary from the examples shown. If Reset Inhibit or Two Stage Audible Silence are not required in your system, then references to these flags are not required in the logic design.

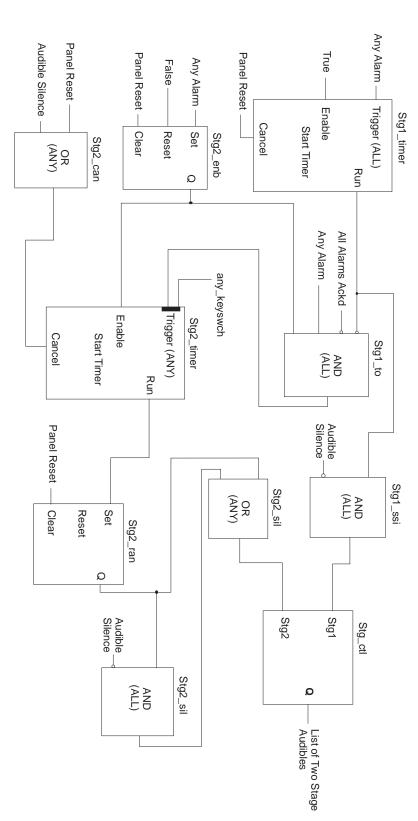

Basic Two Stage System

The figure on page L-6 demonstrates a basic Two Stage system design. Its operation is summarized below:


- This system will output Stage 1 audibles when the first alarm occurs.
- If the alarm is not acknowledged prior to the expiration of *stg1_timer*, coded audibles will be forced output Stage 2 audibles.
- If the alarm is acknowledged during Stage 1, only a keyswitch will place the system in the second stage.
- If the system is reset after the alarm has been acknowledged and coded audibles silenced, the system may be


reset (provided the RESET INHIBIT logic permits).

- If a keyswitch is activated after the ANY_ALARM flag is TRUE, the system will output the second stage audibles.
- In either stage, the audible silence flag/ key controls the silencing and unsilencing of the coded audibles.
- The Panel Reset flag is used to assure timers and latches are reset for the next event after reset.



Typical ANY KEYSWITCH Function

Complex Two Stage System

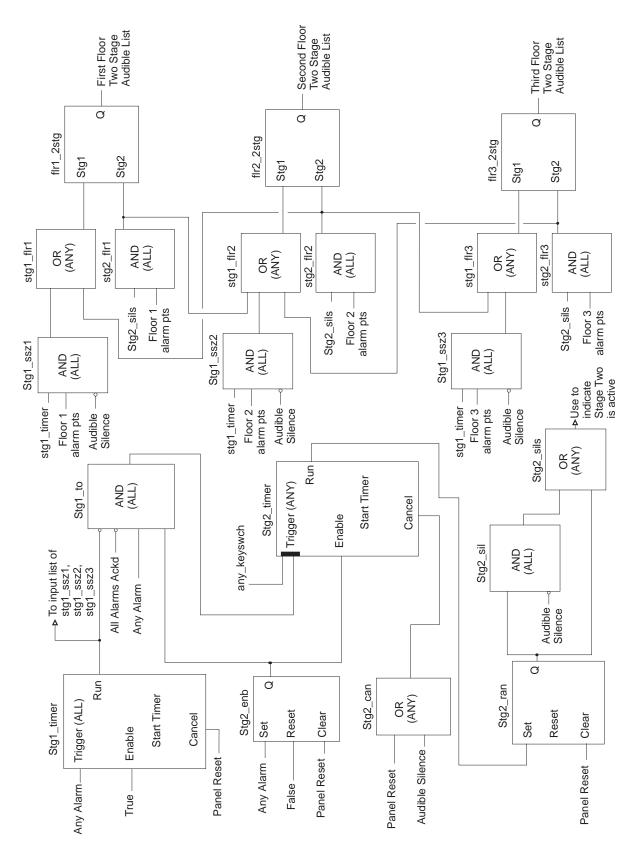
The figure on the next page demonstrates a more complex Two Stage system. The basic principles of operation are the same as the basic Two Stage system with a slight variation.

In this example, several Two Stage control functions are used in the system design. Together with the proper glue logic, a modified Two Stage system is the result. In this system, the floors above and below the alarm signal Stage 1 coded audibles while the floor of alarm codes Stage 2 audibles.

The general differences between the basic and complex systems are as follows:

- The first alarm will result in Stage 1 coding on that floor.
- An activation of a keyswitch will place the system in second stage. Therefore, the floors above and below the alarm will code Stage 1; Stage 2 will code on the floor of alarm.
- If an adjacent floor generates an alarm, that floor will code Stage 2.

This same principle may be applied to networked MXL-IQs using external references.


For example: The building in alarm codes Stage 2 while the adjacent buildings code Stage 1.

Visual indications are made using MOD-16 outputs. Simply connect the signal in the logic diagram to the desired LED or other function to indicate the system stage.

For example: Connect Stage 1 and Stage 2 inputs to an LED function to indicate the system state.

NOTE: Since other audibles may be present in the system besides coded (Two Stage) audibles, the AUDIBLE SILENCE LED on the MKB will indicate the state of the AUDIBLE SILENCE flag as usual. Its state will only change with manual intervention (manual silence/unsilence).

Basic Two Stage System

Complex Two Stage System

Appendix L

Pre-alarm, Dual Criteria Logic Functions, and Percent Per Foot Obscuration Features

The pre-alarm feature provides an early warning of smoke conditions at a more sensitive reading than alarm level. This indication can be in the following form:

- a displayed and printed pre-alarm report
- output logic control
- both

Dual criteria logic allows for the distinction between the chamber or thermal detector of the ILPT-1 photo thermal.

The pre-alarm and dual criteria logic function (ILPT-1 only) features of the ILI or ILP series of detectors are enabled by the FPI-32 Field Programmer.

Note: FPI-32 Rev. 1.3 or higher is required.

The FPI-32 also gives these detectors new unique IDs so that they can be identified at the MXL-IQ as different from the ID-60I and ID-60P series. The ID-60I and ID60P detectors still exist in the CSG-M, but the features described in this appendix do not apply to them.

CSG-M Software

ILI ion detectors and ILP photoelectric detectors are available as I/O device types for ALD-2s (or ALD-2ls). These device types tell the CSG-M and the MXL-IQ that they have the features of pre-alarm, dual criteria (photo thermal only), and ability to display readings in percent per foot (%/ft) obscuration.

These detectors appear in the CSG-M with the existing ID-60I and ID-60P detectors. The MXL-IQ's Custom Software Generator (CSG-M) allows the installation of the ILI or ILP detectors at any valid ALD address.

Pre-alarm

Pre-alarm must be selected to either annunciate a detector's pre-alarm or use the detector in a Criteria Selection function. Pre-alarm can be enabled at each device when it is installed as a Yes/No (Y/N) option.

The CSG-M provides the following *system* options for pre-alarm:

- annunciate (Y/N)
- automatic adjust (Y/N)
- annunciation type trouble
- learning period (1 30 days)
- activate detector LED (Y/N)

Appendix M

Dual Criteria Logic Functions

The CSG-M provides a logic function type labeled *Criteria Selection*. The following inputs to this function are a detector's:

- pre-alarm (from IL devices or Analaser),
- verification, or
- chamber or thermal for the photo thermal detector (ILPT-1)

Pre-alarm and chamber or thermal selections cannot be mixed in the same function. The output can be any that is capable of being driven by output logic, including sending the output to another function.

Note: For networked MXL-IQ systems, no external panel inputs are allowed in the Criteria Selection function.

MXL-IQ Pre-alarm Software

Pre-alarm Learning and Setting

The MXL-IQ automatic pre-alarm learning feature adjusts smoke detector pre-alarm levels (during the time period selected in the CSG-M) until they stabilize. Depending upon pre-alarm activity, the system starts with the most sensitive pre-alarm level and gradually adjusts (de-sensitizes) the MXL-IQ until pre-alarms no longer occur. The level reached by each smoke detector at the end of the learning period is the learned pre-alarm level. No pre-alarms annunciate or feed output logic during this learning period.

The learned pre-alarm level is stored in flash memory so that on a panel power-on, watchdog, or nickel reset, the pre-alarm readings still exist. When a new or modified CSG-M is loaded into flash memory, the MXL-IQ will NOT assume pre-alarm existed before and will re-start the learning mode.

The flash memory used for storing prealarm detector readings shares the intelligent environmental control (IEC) flash memory area. This requires that a boot block flash device be used if pre-alarm is enabled. The flash segment size shared by IEC and pre-alarm is 8K. Each IEC device uses 2 bytes and each pre-alarm device uses 1 byte, allowing a maximum of slightly over 2500 devices with both IEC and prealarm.

Manual pre-alarm settings can be set at the MXL-IQ by using the *CONTROL PER-CENT/FT PRE_ALARM* command (See Pre-alarm and Sensitivity Settings below). Any valid pre-alarm reading within the range specified in the table on page M-3 can be used. Pre-alarm adjustments are in %/ft obscuration. Manual settings override the learning mode settings. However, they do not take effect until the end of the learning period.

Pre-alarm Event Annunciation

Annunciation is a global *yes/no* option and the type of annunciation is a trouble. The trouble report contains the type field text of Pre-alarm and both the INs and OUTs are recorded. The format of these trouble reports is identical to the format of all existing MXL-IQ trouble or supervisory reports.

Annunciation of a pre-alarm smoke detector is provided even if the device goes immediately into alarm. The alarm is reported first because of its higher priority, but a pre-alarm or trouble is also generated thereafter with the same time and date.

Output logic control using the criteria function with ILI/ILP pre-alarm as the criteria selection follows the INs and OUTs. If latching is desired, it must be added in the CSG-M. Using the criteria selection function to select either the chamber or the thermal for the ILPT-1 takes the MXL-IQ an additional 5 seconds (or more) to evaluate after the device alarms. This occurs because a special status poll must be done to determine whether it was the chamber or the thermal that caused the alarm. A criteria function with a selection of alarm verification provides an output for the duration a smoke detector is being verified or until reset if the device alarms.

Pre-alarm and Sensitivity Settings

Pre-alarm and sensitivity adjustments are in %/ft obscuration and have the following ranges, increments, and default values:

	РНОТО	ION
Pre-alarm adjust increment	.25% / ft.	.12% / ft.
Pre-alarm range	.25 - 2.0% / ft.	.2575% / ft.
Pre-alarm default	1.5% / ft.	.75% / ft.
Sensitivity adjust increment	~.25% / ft.	~.12% / ft.
Sensitivity range	1.25 - 3.4% / ft.	.6 - 1.6% / ft.
Sensitivity default (Norm)	3.0% / ft.	1.4% / ft.

Because the pre-alarm and sensitivity settings overlap, set the pre-alarm to at least an increment below the sensitivity setting.

Field Programmer Use

The FPI-32 (Rev. 1.3 or higher) must be used to enable the programming of the ILI and ILP IDs. The IDs tell the smoke detector it has the advanced features such as pre-alarm. For more information about using the FPI-32 with IL series detectors, refer to the *FPI-32 Programmer/Tester Operations Manual*, P/N 315-090077.

Appendix M

MXL-IQ Spare Parts List

Cables	Part Number
SMB-1/-2 to MKB-4	555-192238
SMB-1/-2 to MOM-2/-4 (24V Power)	600-290505
SMB-1/-2 to MOM-2/-4 (5V and Data)	555-190506
SMB-1/-2 to Battery	555-190968
SMB-1/-2 to CSG-M Programming Cable	600-190704
Fuses	
Fuses 20 Amp MDA Normal Blow	105-292017
	105-292017 105-224090
20 Amp MDA Normal Blow	

Appendix N

New Features for MXL-IQ Revision 6.0 and Higher

Reset Causing Zone for MID-16 or CZM-4

This powerful feature allows the user to reset the MXL-IQ by changing the state of the MID-16 or CZM-4 input. In CSG-M Revision 10.01, select the new Local Reset Causing usage for MID-16 or CZM-4 in the *Available Device Usage Types* screen:

LOC RES CAUSNG

The system designer can connect the MID-16 or CZM-4 inputs to another system via a relay or have a remote reset input. When this input changes state to the off-normal position, the MXL-IQ resets in the same way as a RED KEY reset. Existing events do not need to be acknowledged and audibles do not need to be silenced.

NOTE:

This option is limited to NFPA 72A systems. In networked systems, the scope of the reset is local.

ALD Fast Polling

When this option is set in the CSG-M for the ALD loops, the ALD polls only up to the last device installed on the loop, thus speeding up the system response. For example, if there are only 5 devices installed on the ALD loop, the MXL-IQ polls only up to address 5 on that loop instead of polling all 60 addresses.

The ALD Fast Polling option requires ALD-2I board Revision 14 and SMB ROM Rev. 6.0. See the CSG-M Appendix for Revision 10.01, P/N 315-096220, for setting this option.

NOTE:

The ALD Fast Polling option can only be used with Non-Fireprint Detectors.

24 Hour Trouble Resound / Reminder Timer

If this feature is set in CSG-M, the MXL-IQ automatically sounds the trouble buzzer every 24 hours from the time that the trouble was acknowledged until the trouble is cleared. The troubles themselves are not re-annunciated.

Trouble Delay Time for Damper Control Using TRI

This delay time was fixed at 30 seconds in the previous MXL-IQ Revisions. In Revision 6.0, the MXL-IQ delays the TRI damper travel delay time trouble according to the time that is selected in CSG-M. The delay time is programmable from 0 to 90 seconds in 1 second increments.

Delay of AC Failure Report

The delay time is programmable in CSG-M from 0 to 90 seconds in 1 second increments. The default value for this option is 0 seconds, which results in an immediate reporting of the trouble.

If an AC failure occurs, the MXL-IQ checks the database for the delay time and starts

Appendix O

the timer if the delay time is other than zero. No AC failure trouble is reported at this time.

At the end of this delay time, if the AC still fails, the MXL-IQ posts the AC Failure trouble; otherwise, it goes back to the original state.

CCU Pager Interface

A new selection is added to the list of printer selections under the Global MKB in the Network map of the CSG-M: **CCU/M Pager Interface.** The new selection provides a remote interface between the MXL-IQ panel and the operator.

This selection is available in all situations where a printer was previously available. For a 72 Proprietary networked system (72D system), this selection is available under a Display Only Global MKB. There are only two selections in this configuration: NONE and CCU/M. When programmed into the CSG-M, this pager interface can be either supervised or unsupervised. The CCU/M interface is an application specific output device, and not a global MKB printer for a 72D system. Therefore, if it is installed on a 72D networked system, it does not satisfy the compile check for a supervised printer. To pass this compile error, add a supervised printer to a local MKB in every node in a 72D system.

Despite the above limitation, in both 72A and 72D systems the CCU/M interface counts as one GMKB printer available in a networked system.

Only the normal print messages for events are sent to the CCU/M interface. Information such as acknowledge, reset, time changes, etc., do not output. The output formatting is considered as a generic ASCII printer.

IQ Connections & Ratings

MXL-IQ Model	Description	Installation Instructions
5128/5129	Digital Fire Communicator	315-093294
ALD-2I	Analog Loop Driver	315-091464
ALI-8B	Enclosure For TRIs	315-098327
CCU/M	Pager Interface Module	315-096324
CMI-300	CXL/MXL Interface Module	315-091259
CP2297	24 VDC Transient Protector	315-092355
CP2341	120 VAC Transient Protector	315-092390
CPY-HLI	VESDA Interface Card	315-099200
CRM-4	Controllable Relay Module	315-090853
CSM-4	Controllable Signal Module	315-090854
CZM-1B6	Remote Convent'l Zone Module	315-095355
CZM-4	Conventional Zone Module	315-090726
D2300CP	Fiber Optic Interface	315-092882
IQ-DFL	Dead Front Panel	315-095446
ICP-B6	Intelligent Control Point	315-095306
LIM-1	Line Isolator Module	315-092135
LLM-1	Leased Line Module	315-093530
MDACT	Multi-Pt Digital Alarm Comm	315-099351
MID-16	Input Module	315-091860
МКВ-4	Annunciator/Keypad Module	315-093575
МКВ-6 / -6С	Annunciator/Keypad Module	315-048722
MOD-16	Output Driver	315-090830

MXL-IQ Model	Description	Installation Instructions
MOI-7	MXL/MXL-IQ Annunciator Driver	315-092799
MOM-2	Optional Card Cage Module	315-092777
MOM-4	Optional Card Cage Module	315-090852
MPS-6/-12/-220/-240	Power Supply Modules	315-090334 315-092820
MSE-3L	Enclosure For MXL-IQ	315-095445
MSE-3M	Enclosure For MXL-IQ	315-048720
NIM-1M	Netwrk Interface Modem Module	315-099105
NIM-1W	Network Interface Module	315-099165
NIM-1W/-1M	Wide Area Applications	315-099106
PIM-1	Peripheral Interface Mod	315-091462
PIM-2 / PAL-1	Peripheral Interface Mod/Printer	315-092408
PS-5A	Power Supply	315-092367
PS-5N7	Network Interface/5V Pwr Supply	315-092729
RCC-1 / -1F	Remote Command Center	315-095364
RCC-2 / RSE-1	Remote Control Centers	315-099160
RCC-3/-3F/-3C/-3FC	Remote Command Center	315-048665
RDM-1	Remote Diagnostics Module	315-096326
SMB-2	Main Control Board - IQ	315-095931
TRI-B6M	Addressable Interface Module	315-049485
TRI-S / TRI-D / TRI-R	Addressable Interface Modules	315-049481
TSM-1	Test Switch Module	315-098285
TSW-2	Tamper Switch	315-092433

Index

A

Acknowledge menu. See Menu: Acknowledge addresses 3 - 1 fixed addresses 3 - 1 alarm verification E - 1 to E - 2 ALD fast polling. See new features - rev.6.0 and higher ALD-21 description 1 - 8 installation 2 - 12 module address 3 - 2 analog loop 1 - 1 analog voltages. See device analog voltages application specific detection I - 1 to I - 2 ASD. See application specific detection

B

battery calculations C - 1 BP-61 batteries description 1 - 7 BTX batteries description 1 - 7

C

CCU pager interface. See new features - rev.6.0 and higher CCU/M Pager Interface description 1 - 8 CMI-300 description 1 - 8 installation 2 - 13 compatible devices A - 1. See devices, compatible Connections & Ratings A - 1 CRM-4 description 1 - 9 installation 2 - 14 module address 3 - 2 CSM-4 description 1 - 9 installation 2 - 14 module address 3 - 2 use with LMM-1 1 - 10 CZM-1B6 description 1 - 17 CZM-4 description 1 - 9 installation 2 - 14 module address 3 - 2

D

D2300CP Fiber Optic Interface description 1 - 10 delay of AC failure report. See new features - rev.6.0 and higher device analog voltages B - 1. See analog voltages devices, compatible. See compatible devices DI Series of detectors description 1 - 17, 1 - 18 DT-11 description 1 - 18 dual criteria logic N - 1 to N - 3

E

Envirolink F - 1 to F - 3

F

FP Series of detectors description 1 - 14

Η

History Log display 6 - 6 to 6 - 10 audible silenced event 6 - 8 audible unsilenced event 6 - 8 auto sensitivity set event 6 - 9 block acknowledge event 6 - 7 configuration changed event 6 - 9 event 6-6 formats 6 - 6 manual sensitivity set event 6 - 9 override event 6 - 8 password event 6 - 8 reset event 6 - 6 set time event 6 - 7 download formats 6 - 13 sequence 6 - 14 local log query 6 - 5 logging methods 6 - 2 to 6 - 4 options 6 - 1 enable, disable and erase 6 - 4 overview 6 - 1 print formats 6 - 10 to 6 - 13

ICP ICP-B6 description 1 - 14 ID Series of detectors description 1 - 14, 1 - 15 IEC. See Envirolink ILI Series of detectors description 1 - 15, 1 - 16 ILP Series of detectors description 1 - 16 ILT description 1 - 16

L

latching/non-latching troubles G - 1 LIM-1 description 1 - 16 LMM-1 description 1 - 10

Μ

MDACT description 1 - 10 Menu. See MKB-4: operation Acknowledge 3 - 18 Alarm 3 - 18 to 3 - 19 Security 3 - 20 to 3 - 21 Supervisory 3 - 19 to 3 - 20 Trouble 3 - 21 to 3 - 22 Control 3 - 36 to 3 - 42 Analazer 3 - 40 to 3 - 41 Arm/dis 3 - 38 Change Apps 3 - 42 Loop Arm 3 - 39 Loop Disarm 3 - 40

Index - 2

Net Link Request 3 - 40 Output on/off 3 - 39 Percent/ft 3 - 41 to 3 - 42 Reset 3 - 37 Sensitivity 3 - 37 List 3 - 22 to 3 - 36 Alarm 3 - 23 to 3 - 24 Analazer 3 - 32 to 3 - 34 ASC apps 3 - 35 to 3 - 37 Device Type 3 - 29 Device Usages 3 - 32 Message 3 - 30 Module 3 - 28 to 3 - 29 Node Address 3 - 32 Output States 3 - 31 to 3 - 32 Percent/ft 3 - 34 to 3 - 35 Security 3 - 24 to 3 - 25 Sensitivity 3 - 26 Software Version 3 - 30 to 3 - 31 Status 3 - 23 Supervisory 3 - 24 Temp 3 - 28 Trouble 3 - 25 to 3 - 26 Voltages 3 - 26 to 3 - 28 Test 3 - 42 to 3 - 50 ASD Devices 3-48 Det cleaned 3 - 47 Device LED 3 - 45 to 3 - 50 Event Log 3 - 47 Ground Fault 3 - 44 Lamp Test 3 - 45 Manual Activate 3 - 49 to 3 - 50

Manual Activate - Test 3 - 50 MOI Lamp Test 3 - 46 Override 3 - 46 to 3 - 47 Power 3 - 44 to 3 - 45 Pre-alarm 3 - 48 Pyro-diags 3 - 48 Set Time 3 - 43 to 3 - 44 Summarize 3 - 48 to 3 - 49 Summarize - OFF 3 - 49 to 3 - 50 Summarize - ON 3 - 49 to 3 - 50 Summarize - Select_Mods 3 - 48 to 3 - 50 Test Network (X-Net, M-Net) 3 - 46 Walktest. See Walktest: operating instructions Menu overview 3 - 14 MID-16 description 1 - 10 installation 2 - 9 MKB-4 description 1 - 5 global operation 3 - 12 to 3 - 14 display format 3 - 12 keypad 3 - 13 limitations and restrictions 3 - 12 installation 2-4 module address 3 - 2 operation 3 - 3 alarm 3 - 6 to 3 - 8 command keypad 3 - 5 display 3 - 3 display keys 3 - 5 internal audible 3 - 4 LEDs 3-5

modes of operation 3 - 5 numeric keypad 3 - 4 security 3 - 9 to 3 - 10 special (alt + function) keypad 3 - 5 supervisories 3 - 8 to 3 - 9 troubles 3 - 9 using the menu. See Menu walktest. See Walktest: operating instructions **MOD-16** description 1 - 11 installation 2 - 9 operation 3-3 Module Addresses, See Addresses MOI-7 description 1 - 11 installation 2 - 9 module address 3 - 2 operation 3 - 3 MOM-2 description 1 - 11 installation 2-6 MOM-4 description 1 - 12 installation 2 - 6 MPS-6/-6W, MPS-12/-12W description 1 - 5 installation 2-3 MSE-3L installation 2 - 2 MSI Series of manual stations description 1 - 16 MXL Power Supply Load Calculations D - 1

MXL-IQ

basic components 1 - 4
battery calculations C - 1
minimum configuration 1 - 3
new features - rev.6.0 and higher. See reset causing zone for MID-16 or CZM-4
power supply load calculations D - 1
software 1 - 1

Ν

new features - rev.6.0 and higher
24 hour trouble resound /reminder timer P - 1. See
24 hour trouble resound /reminder timer
ALD fast polling P - 1
CCU pager interface P - 2
delay of AC failure report P - 1 to P - 2
reset causing zone P - 1
trouble delay time for damper control using TRI P - 1
NIM-1R
description 1 - 12
installation 2 - 14

Ρ

```
PAL-1
description 1 - 6
PBA-1191
description 1 - 18
PE Series of detectors
description 1 - 18
percent per foot obscuration N - 1 to N - 3
PIM-1
description 1 - 6
```

Index - 4

installation 2 - 5 PIM-2/PAL-1 installation 2 - 6 power limited wiring L - 1 power supply load calculations D - 1 pre-alarm N - 1 to N - 3 PS-5A description 1 - 13

R

RCC-1/1F description 1 - 13 RCC-2/R description 1 - 13 RCC-3/-3C/-3F/-3FC description 1 - 13 RCM-1 use with LMM-1 1 - 10 RDM-PC Remote Diagnostics Module description 1 - 13 reset causing zone for MID-16 or CZM-4. See new features - rev.6.0 and higher: reset causing zone reset procedures hard reset 3 - 11 soft reset 3 - 11

S

security points, installing H - 1
self restoring troubles. See latching/non-latching troubles
Silent Knight Model 5128/5129
description 1 - 14

SMB

description 1 - 4 SMB-1/-2 installation 2 - 3 module address 3 - 2 spare parts list O - 1 start up procedure 2 - 10 system operation, global 3 - 12 to 3 - 14 system test 4 -1

T

TRI Series of interface modules description 1 - 17
trouble delay time for damper control using TRI. See new features - rev.6.0 and higher
trouble messages K - 1 to K - 8
trouble resound (24 hour) / reminder timer. See new features - rev.6.0 and higher
Troubleshooting Guide 4 -2
TSW-2 description 1 - 7 installation 2 - 2

W

Walktest operating instructions 5 - 3 overview 5 - 1 suggested procedure 5 - 2 to 5 - 6

Index

Index - 6

WARNING:

This equipment generates, uses, and can radiate radio frequency energy and if not installed and used in accordance with the instructions manual, may cause interference to radio communications. It has been tested and found to comply with the limits for a Class A computing device pursuant to Part 15 of FCC Rules, which are designed to provide reasonable protection against such interference when operated in a commercial environment. Operation of this equipment in a residential area is likely to cause interference in which case the user at his own expense will be required to take whatever measures may be required to correct the interference.

Siemens Industry, Inc. Building Technologies Division Florham Park, NJ

P/N 315-093624-13

Siemens Building Technologies, Ltd. Fire Safety & Security Products 2 Kenview Boulevard Brampton, Ontario L6T 5E4 Canada