FAN SAFETY ALARM CIRCUITS

RIBMNWLB-7-BC

BACnet® AHU Fan Safety Alarm and General Purpose Logic Circuit, 24Vac/dc Power Input, Standard BACnet® RIB 7, BI and 2 BO Relays when Fan Safety Alarm Circuit Disabled

RIBMNWLB-7-BC

SPECIFICATIONS

Expected Relay Life: 10 million cycles minimum mechanical

Operating Temperature: -30 to 140° F

Humidity Range: 5 to 95% (noncondensing)
Operate Time: 8ms

Power Input: 24 Vac/dc: 50-60 Hz

Max current input determined by adding load current user applies to BO 1-1 (3A Max) plus 75 mA @ 24 Vac or 30 mA @ 24 Vdc depending on power source supplied by user to power RIB device, 24 Vac or 24 Vdc

Dimensions: 6.615" x 2.750" x 1.750" (RIBMNWLB-7-BC), MT212-6

Mounting Track Provided

Approvals: UL864, UL916, C-UL, CE, RoHs

Relay Rating, BO 1-1: 3 Amp Max @ 24 Vac or 24 Vdc (depending on power

source supplied by user to power RIB device)

Relay Rating, BO 1-2: 10 Amp Resistive @ 30 Vdc

10 Amp General Use @ 277 Vac 1/2 HP @ 120/240 Vac

Relay Rating, BO 2: 20 Amp Resistive @ 277 Vac

5 Amp @ 480 Vac 20 Amp Ballast @ 277 Vac 16 Amp Electronic Ballast @ 277 Vac

1 HP @ 120 Vac 2 HP @ 277 Vac

Relay Override Switch: DIP Switch Control

Network Media: Twisted Pair 22-24AWG, shielded

recommended

Terminations: Functional Devices product installed at both ends

of the MS/TP network – Use 120 Ω end of line resistors. All other cases – Follow instructions from

the device installed at the end of the

MS/TP network.

Polarity: Network is polarity sensitive

Baud Rate: 9600, 19200, 38400, 57600, 76800, 115200 (DIP

Switch Selectable)

Notes:

- When connecting 24 Vac to both the RIB(s) and a half-wave device, damage to device can occur.
- Option 1: Use separate transformers for each device.
 Option 2: Add diode between devices, see Option 2 note below. ^^
- RIBMNWLB-7-BC operates as a Fan-Safety-Circuit by default from the factory. However, Fan-Safety-Circuit function can be disabled and RIB can be used as a standard BACnet RIB with 2 BO relays and 7 general-purpose BI. Fan-Safety-Circuit mode sets up BI 1-BI 6 in an AND function where when all of BI 1-BI 6 are closed. BO 1 will close.
- Enable and disable Fan-Safety-Circuit function by way of Proprietary Property AND_Function_Enable (No. 277001) in BO 1. (Binding of BI 7 to BO 2 is usually used as part of Fan-Safety-Circuit function and it may be desirable to disable this too if not using Fan-Safety-Circuit function.)

BACnet® Details:

- MS/TP Address & Baud Rate must be set prior to power up via DIP switches.
- Device ID will default to 277XXX where XXX is the MS/TP Address.
 Examples:

MS/TP Address - 004 Device ID - 277004

MS/TP Address - 121 Device ID - 277121

• Device ID can be changed via network command. Once changed, it will no longer default to 277XXX. (MS/TP Address & Device ID must be unique.)

DIP SWITCHES*			BAUD RATE
8	9	10	
0	0	0	9600
0	0	1	19200
0	1	0	38400
0	1	1	57600
1	0	0	76800
1	0	1	115200

All other combinations = 9600 baud

* 0 = Open ; 1 = Closed

Option 2: Add diode on 24 Vac power (Comm) interconnection between devices. Band on diode faces towards RIB(s).

WIRING DIAGRAM

